請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許富鈞 | zh_TW |
| dc.contributor.advisor | Fu-Chiun Hsu | en |
| dc.contributor.author | 林蓉 | zh_TW |
| dc.contributor.author | Jung Lin | en |
| dc.date.accessioned | 2023-10-03T17:12:43Z | - |
| dc.date.available | 2023-10-04 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 行政院農委會農糧署. 2023. 農情調查資源查詢. 農情調查資訊查詢. <https://agr.afa.gov.tw/afa/afa_frame.jsp>.
行政院農業委員會. 2019. 農作物被害狀況. 刊於:行政院農業委員會主編. 農業統計年報108年. 行政院農業委員會. 台灣. 張武男、黃鵬. 1998. 台灣蔥科蔬菜品種改良之研究. 蔬菜育種技術研習會專刊 87:305-324. 陳葦玲、郭孚燿、陳榮五. 2008. 淹水逆境對於不同栽培品種小白菜種子發芽及植株生長之影響. 臺中區農業改良場研究彙報 100:1-12. 楊素絲. 2019a. 青蔥產業概述, p. 3-10. 刊於:劉興榮主編. 農業經營專區技術叢書—青蔥栽培管理手冊. 行政院農委會花蓮區農業改良場. 花蓮. 台灣. 楊素絲. 2019b. 青蔥田間栽培與管理, p. 11-17. 刊於:劉興榮主編. 農業經營專區技術叢書—青蔥栽培管理手冊. 行政院農委會花蓮區農業改良場. 花蓮. 台灣. 魏清松. 2012. 肥料種類及激勃素對青蔥盆栽植株生育特性之影響. 國立嘉義大學農學院農藝學系(原農學農研究所)碩士論文. 嘉義. 顧芷凌. 2010. 淹水後復氧期間氧化逆境對甘藍淹水耐受性之角色. 國立臺灣大學園藝暨景觀學系研究所學位論文. 臺北. Alagna, F., N. D'Agostino, L. Torchia, M. Servili, R. Rao, M. Pietrella, G. Giuliano, M. L. Chiusano, L. Baldoni, and G. Perrotta. 2009. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom. 10:399. Alpuerto, J. B., R. M. Hussain, and T. Fukao. 2016. The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Plant Cell Environ. 39:672-684. Anee, T. I., K. Nahar, A. Rahman, J. A. Mahmud, T. F. Bhuiyan, M. U. Alam, M. Fujita, and M. Hasanuzzaman. 2019. Oxidative damage and antioxidant defense in sesamum indicum after different waterlogging durations. Plants 8:196. Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabolism oxidative stress and signal transduction. Ann. Rev. Plant Mol. Biol. 55:373-399. Armstrong, W. and M. C. Drew. 2002. Root growth and metabolism under oxygen deficiency. p. 729-761. In: Y. Waisel, A. Eshel, T. Beeckman, U. Kafkafi (eds.). Plant roots: the hidden half. CRC Press. Boca Raton, Ind. Ashraf, M. A. 2012. Waterlogging stress in plants: A review. Afr. J. Agril. Res. 7:1976-1981. Ashrafi, H., T. Hill, K. Stoffel, A. Kozik, J. Yao, S. R. Chin-Wo, and A. V. Deynze. 2012. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom. 13:571. Ayano, M., T. Kani, M. Kojima, H. Sakakibara, T. Kitaoka, T. Kuroha, R.B. Angeles-Shim, H. Kitano, K. Nagai, and M. Ashikar. 2014. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 37:2313-2324. Azhar, B. J., A. Zulfiqar, S. N. Shakeel, and G. E. Schaller. 2020. Amplification and adaptation in the ethylene signaling pathway. Small Methods 4:1900452. Bailey-Serres, J. and R. Chang. 2005. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann. Bot. 96:507-518. Bailey-Serres, J., T. Fukao, D. J. Gibbs, M. J. Holdsworth, S. C. Lee, F. Licausi, P. Perata, L. A. C. J. Voesenek, and J. T. van Dongen. 2012. Making sense of low oxygen sensing. Trends Plant Sci. 17:129-138. Bailey-Serres, J., T. Fukao, P. Ronald, A. Ismail, S. Heuer, and D. Mackill. 2010. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138-147. Bailey-Serres, J. and L. A. C. J. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59:313-339. Barding, G. A., T. Fukao, S. Béni, J. Bailey-Serres, and C. K. Larive. 2012. Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy. J. Proteome Res. 11:320-330. Barik, J., D. Panda, S. K. Mohanty, and S. K. Lenka. 2019. Leaf photosynthesis and antioxidant response in selected traditional rice landraces of Jeypore tract of Odisha, India to submergence. Physiol. Mol. Biol. Plants. 25:847-863. Barrs, H. and P. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413-428. Baxter-Burrell, A., Z. Yang, P. S. Springer, and J. Bailey-Serres. 2002. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026-2028. Baxter, A., R. Mittler, and N. Suzuki. 2014. ROS as key players in plant stress signalling. J. Exp. Bot. 65:1229-1240. Behjati, S. and P. S. Tarpey. 2013. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 98:236-238. Benschop, J. J., M. B. Jackson, K. Gühl, R. A. M. Vreeburg, S. J. Croker, A. J. M. Peeters, and L. A. C. J. Voesenek. 2005. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J. 44:756-768. Biemelt, S., M.R. Hajirezaei, M. Melzer, G. Albrecht, and U. Sonnewald. 1999. Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta 210:41-49. Bieniawska, Z., D. H. P. Barratt, A. P. Garlick, V. Thole, N. J. Kruger, C. Martin, R. Zrenner, and A. M. Smith. 2007. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49:810-828. Binder, B. M. 2020. Ethylene signaling in plants. J. Biol. Chem. 295:7710-7725. Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91:179-194. Bournonville, C. F. and J. C. Diaz-Ricci. 2011. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem. Anal. 22:268-271. Chang, C., S. F. Kwok, A. B. Bleecker, and E. M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539-544. Chang, R., C. J. Jang, C. Branco-Price, P. Nghiem, and J. Bailey-Serres. 2012. Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Mol. Biol. 78:109-122. Chen, S., C. Yin, R. J. Strasser, Govindjee, C. Yang, and S. Qiang. 2012. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol. Biochem. 52:38-51. Czarnocka, W. and S. Karpiński. 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 122:4-20. Das, K. and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53. Das, K. K., D. Panda, M. Nagaraju, S. G. Sharma, and R. K. Sarkar. 2004. Antioxidant enzymes and aldehyde releasing capacity of rice cultivars (Oryza sativa L.) as determinants of anaerobic seedling establishment capacity. Bulg. J. Plant Physiol. 30:34-44. Desikan, R., K. Last, R. Harrett-Williams, C. Tagliavia, K. Harter, R. Hooley, J.T. Hancock, and S.J. Neill. 2006. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 47:907-916. Dhungana, S. K., H. S. Kim, B. K. Kang, J. H. Seo, H. T. Kim, J. H. Oh, S. O. Shin, and I. Y. Baek. 2021. Analysis of differentially expressed genes in soybean leaf tissue of tolerant and susceptible cultivars under flooding stress revealed by RNA sequencing. J. Crop Sci. Biotechnol. 24:83-91. Drew, M.C. 1997. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Biol. 48:223-250. Eklöf, J. M. and H. Brumer. 2010. The XTH gene family: anupdate on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol. 153:456-466. Ella, E. S., N. Kawano, and O. Ito. 2003. Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Sci. 165:85-93. Foyer, C. H., N. Souriau, S. Perret, M. Lelandais, K. J. Kunert, C. Pruvost, and L. Jouanin. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109:1047-1057. Fry, S. C., R. C. Smith, K. F. Renwick, D. J. Martin, S. K. Hodge, and K. J. Matthews. 1992. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J. 282:821-828. Fukao, T., B. E. Barrera-Figueroa, P. Juntawong, and J. M. Peña-Castro. 2019. Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front. Plant Sci. 10. Fukao, T., E. Yeung, and J. Bailey-Serres. 2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412-427. Fukao, T. and J. Bailey. 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. U.S.A. 105:16814-16819. Fukao, T., K. Xu, P. C. Ronald, and J. Bailey-Serres. 2006. A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021-2034. Gao, S., K. Wang, N. Li, Y. Lv, B. Cao, Z. Chen, and K. Xu. 2022. The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing. Environ. Exp. Bot. 197:104835. Gasch, P., M. Fundinger, J. T. Müller, T. Lee, J. Bailey-Serres, and A. Mustroph. 2016. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell 28:160-180. Gibbs, D. J., N. M. Isa, M. Movahedi, J. Lozano-Juste, G. M. Mendiondo, S. Berckhan, N. M.-d. l. Rosa, J. V. Conde, C. S. Correia, S. P. Pearce, G.W. Bassel, B. Hamali, P. Talloji, D. F. A. Tomé, A. Coego, J. Beynon, D. Alabadí, B. Andreas, L. José, J. E. Gray, and M. J. Holdsworth. 2014. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53:369-379. Gibbs, D. J., S. C. Lee, N. M. Isa, S. Gramuglia, T. Fukao, G. W. Bassel, C. S. Correia, F. Corbineau, F. L. Theodoulou, J. Bailey-Serres, and M. J. Holdsworth. 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415-418. Gill, S. S., N. A. Anjum, M. Hasanuzzaman, R. Gill, D. K. Trivedi, I. Ahmad, E. Pereira, and N. Tuteja. 2013. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70:204-212. Giuntoli, B., F. Licausi, H. van Veen, and P. Perata. 2017. Functional balancing of the hypoxia regulators RAP2.12 and HRA1 takes place in vivo in Arabidopsis thaliana plants. Front. Plant Sci. 8:2017. Goswami, S., R. K. Kar, P. Anupam, and N. Dey. 2017. Study of selected biochemical parameters related to submergence tolerance in rice (Oryza sativa L.) with special reference to land races and wild species. Res. J. Chem. Environ. 21:29-38. Hao, D., M. Ohme-Takagi, and A. Sarai. 1998. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J. Biol. Chem. 273:26857-26861. Hartman, S., Z. Liu, H.v. Veen, J. Vicente, E. Reinen, S. Martopawiro, H. Zhang, N. v. Dongen, F. Bosman, G. W. Bassel, E. J. W. Visser, J. Bailey-Serres, F. L. Theodoulou, K. H. Hebelstrup, D. J. Gibbs, M. J. Holdsworth, R. Sasidharan, and L. A. C. J. Voesenek. 2019. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10:1-9. Hartman, S., R. Sasidharan, and L. A. C. J. Voesenek. 2021. The role of ethylene in metabolic acclimations to low oxygen. New Phytol. 229:64-70. Hasanuzzaman, M., M. A. Hossain, J. A. T. da Silva, and M. Fujita. 2012. Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor, p. 261-316. In: V. Bandi, A.K. Shanker, C. Shanker, and M. Mandapaka (eds.). Crop stress and its management: perspectives and strategies. Springer, Berlin, Germany. Hasanuzzaman, M., M. A. Hossain, and M. Fujita. 2010. Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. Am. J. Plant Physiol. 5:295-324 Hattori, Y., K. Nagai, S. Furukawa, X. -J. Song, R. Kawano, H. Sakakibara, J. Wu, T. Matsumoto, A. Yoshimura, H. Kitano, M. Matsuoka, H. Mori, and M. Ashikari. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026-1030. Hinz, M., I. W. Wilson, J. Yang, K. Buerstenbinder, D. Llewellyn, E.S. Dennis, M. Sauter, and R. Dolferus. 2010. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153:757-772. Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae. 2013. Global flood risk under climate change. Nat. Clim. 3:816-821. Hirano, K., E. Kouketu, H. Katoh, K. Aya, M. Ueguchi-Tanaka, and M. Matsuoka. 2012. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J. 71:443-453. Hirose, T., G. N. Scofield, and T. Terao. 2008. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Science 174:534-543. Hoffmann-Benning, S. and H. Kende. 1992. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99:1156-1161. Holbrook, N. M. and M. A. Zwieniecki. 2003. Water gate. Nature 425:361. Hu, Z., X. Qi, M. Zhang, X. Chen, and M. Nakazono. 2016. Roles of phytohormones in morphological and anatomical responses of plants to flooding stress. In: G. Ahammed and J. Yu (eds.). Plant hormones under challenging environmental factors. Springer, Dordrecht. Huang, C., W. He, J. Guo, X. Chang, P. Su, and L. Zhang. 2005. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant J. Exp. Bot. 56:3041-3049. Ighodaro, O. M. and O. A. Akinloye. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 54:287-293. Inden, H. and T. Asahira. 1990. Japaness bunching onion (Allium fistulosum L.). In: J.L. Brewster and H.D. Rabinowitch (eds.). Onions and allied crops: volume iii: biochemistry, food science, and minor crops. CRC Press, United States. Florida. Ismond, K. P., R. Dolferus, M. D. Pauw, E. S. Dennis, and A. G. Good. 2003. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol. 132:1292-1302. Jackson, M. B. and P. C. Ram. 2003. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 91:227-241. Jia, W., M. Ma, J. Chen, and S. Wu. 2021. Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. Int. J. Mol. Sci. 22:1088. Järvi, S., M. Suorsa, and E. M. Aro. 2015. Photosystem II repair in plant chloroplasts--regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim. Biophys. Acta 1847:900-909. Junglee, S., L. Urban, H. Sallanon, and F. Lopez-Lauri. 2014. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am. J. Anal. Chem. 5:730-736. Kato, Y., B. C. Y. Collard, E. M. Septiningsih, and A. M. Ismail. 2014. Physiological analyses of traits associated with tolerance of long-term partial submergence in rice. AoB PLANTS 6:plu058. Kawano, N., E. Ella, O. Ito, Y. Yamauchi, and K. Tanaka. 2002. Metabolic changes in rice seedlings with different submergence tolerance after desubmergence. Environ. Exp. Bot. 47:195-203. Kende, H., E. van der Knaap, and H. -T. Cho. 1998. Deepwater rice: a model plant to study stem elongation. Plant Physiol. 118:1105-1110. Kennedy, R. A., M. E. Rumpho, and T. C. Fox. 1992. Anaerobic metabolism in plants. Plant Physiol. 100:1-6. Khana, M. I. R., A. Trivellinib, H. Chhillara, P. Chopraa, A. Ferrantec, N. A. Khand, and A. M. Ismaile. 2020. The significance and functions of ethylene in flooding stress tolerance in plants. Environ. Exp. Bot. 179:104188. Klay, I., S. Gouia, M. Liu, I. Mila, H. Khoudi, A. Bernadac, M. Bouzayen, and J. Pirrello. 2018. Ethylene response factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Science 274:137-145. Kumar, P., M. Pal, R. Joshi, and R. K. Sairam. 2013. Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol. Mol. Biol. Plants. 19:209-220. Kuroha, T., K. Nagai, R. Gamuyao, D. R. Wang, T. Furuta, M. Nakamori, T. Kitaoka, K. Adachi, A. Minami, Y. Mori, K. Mashiguchi, Y. Seto, S. Yamaguchi, M. Kojima, H. Sakakibara, J. Wu, K. Ebana, N. Mitsuda, M. Ohme-Takagi, S. Yanagisawa, M. Yamasaki, R. Yokoyama, K. Nishitani, T. Mochizuki, G. Tamiya, S. R. McCouch, and M. Ash. 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361:181-186. Kürsteiner, O., I. Dupuis, and C. Kuhlemeier. 2003. The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol. 132:968-978. Li, D., Z. Deng, B. Qin, X. Liu, and Z. Men. 2012. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genom. 13:192. Li, L., G. Huang, W. Xiang, H. Zhu, H. Zhang, J. Zhang, Z. Ding, J. Liu, and D. Wu. 2022. Integrated transcriptomic and proteomic analyses uncover the regulatory mechanisms of Myricaria laxiflora under flooding stress. Front. Plant Sci. 13:924490. Licausi, F., M. Kosmacz, D. A. Weits, B. Giuntoli, F. M. Giorgi, L. A. C. J. Voesenek, P. Perata, and J. T. van Dongen. 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419-422. Licausi, F. and P. Perata. 2009. Low oxygen signaling and tolerance in plants. Adv. Bot. Res. 50:139-198. Linster, C. L. and S. G. Clarke. 2008. l-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci. 13:567-573. Liu, B., L. Sun, L. Ma, and F.S. Hao. 2017b. Both AtrbohD and AtrbohF are essential for mediating responses to oxygen deficiency in Arabidopsis. Plant Cell Rep. 36:947-957. Liu, F., T. Van Toai, L. P. Moy, G. Bock, L. D. Linford, and J. Quackenbush. 2005. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol. 137:1115-1129. Liu, Q., C. Wen, H. Zhao, L. Zhang, J. Wang, and Y. Wang. 2014. RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion. PLoS ONE 9: e113290. Loreti, E., H. van Veen, and P. Perata. 2016. Plant responses to flooding stress. Curr. Opin. Plant Biol. 33:64-71. Lü, P., M. Kang, X. Jiang, F. Dai, J. Gao, and C. Zhang. 2013. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta. 237:1547-1559. Luo, F. L., K. A. Nagel, H. Scharr, B. Zeng, U. Schurr, and S. Matsubara. 2011. Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: a comparison between two wetland plants showing escape and quiescence strategies. Ann. Bot. 107:49-63. Luo, F. L., B. Thiele, I. Janzik, B. Zeng, U. Schurr, and S. Matsubara. 2012. De-submergence responses of antioxidative defense systems in two wetland plants having escape and quiescence strategies. J. Plant Physiol. 169:1680-1689. Müller-Moulé, P. 2008. An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol. Biol. 68:31-41. Marin E., L. Nussaume, A. Quesada, M. Gonneau, B. Sotta, P. Hugueney, A. Frey, A. Marion-Poll. 1996. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15: 2331-2342. Marioni, J. C., C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad. 2008. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18:1509-1517. Marowa, P., A. Ding, and Y. Kong. Expansins: roles in plant growth and potential applications in crop improvement. 2016. Plant Cell Rep. 35: 949-965. McCord, M. and I. Fridovich. 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049-6055. Mekhedov, S. L. and H. Kende. Submergence enhances expression of a gene encoding 1-aminocyclopropane-1-carboxylate oxidase in deepwater rice. 1996. Plant Cell Physiol. 37:531-537. Metzker, M. L. 2010. Sequencing technologies — the next generation. Nat. Rev. Genet. 11:31-46. Miller, G., N. Suzuki, S. Ciftci-Yilmaz, and R. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33:453-467. Min, X.J. and D.P. Bartholomew. 2005. Effects of flooding and drought on ehtylene metabolism, titratable acidity and fruiting of pineapple. Acta Hortic. 666:135-148. Mithran, M., E. Paparelli, G. Novi, P. Perata, and E. Loreti. 2014. Analysis of the role of the pyruvate decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant Biol. 16:28-34. Mittler, R., S. Vanderauwera, M. Gollery, and F. V. Breusegem. 2004. Abiotic stress series reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. Mittova, V., M. Volokita, M. Guy, and M. Tal. 2000. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 110:42-51. Mommer, L., J. P. M. Lenssen, H. Huber, E. J. W. Visser, and H. De Kroon. 2006. Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. J. Ecol. 94:1117-1129. Morales, M. and S. Munné-Bosch. 2019. Malondialdehyde: facts and artifacts. Plant Physiol. 180:1246-1250. Morozova, O., M. Hirst, and M. A. Marra. 2009. Applications of new sequencing technologies for transcriptome analysis. Annu. Rev. Genom. Hum. Genet. 10:135-151. Nagai, K., Y. Mori, S. Ishikawa, T. Furuta, R. Gamuyao, Y. Niimi, T. Hobo, M. Fukuda, M. Kojima, Y. Takebayashi, A. Fukushima, Y. Himuro, M. Kobayashi, W. Ackley, H. Hisano, K. Sato, A. Yoshida, J. Wu, H. Sakakibara, Y. Sato, H. Tsuji, T. Akagi, and M. Ashikari. 2020. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584:109-114. Nakano, T., K. Suzuki, T. Fujimura, and H. Shinshi. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140:411-432. Nishiuchi, S., T. Yamauchi, H. Takahashi, L. Kotula, and M. Nakazono. 2012. Mechanisms for coping with submergence and waterlogging in rice. Rice 5:2. Nobuta, K., C. Lu, R. Shrivastava, M. Pillay, E. D. Paoli, M. Accerbi, M. Arteaga-Vazquez, L. Sidorenko, D. -H. Jeong, Y. Yen, P. J. Green, V. L. Chandler, and B. C. Meyers. 2008. Distinct size distribution of endogeneous siRNAs in maize: evidence from deep sequencing in the mop1-1 mutant. Proc. Natl. Acad. Sci. USA 105:14958 -14963. Olszewski, N., T. -p. Sun, and F. Gubler. 2002. Gibberellin signaling. Biosynthesis, catabolism, and response pathways,. Plant Cell 14:s61-s80. Ozden, M., U. Demirel, and A. Kahraman. 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci. Hortic. 119:163-168. Ozsolak, F. and P. M. Milos. 2011. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12:87-98. Pérez-Pérez, M. E., S. D. Lemaire, and J. L. Crespo. 2012. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 160:156-164. Padula, G., X. Xia, and R. Hołubowicz. 2022. Welsh Onion (Allium fistulosum L.) seed physiology, breeding, production and trade. Plants 11:343. Pan, Y., G. B. Seymour, C. Lu, Z. Hu, X. Chen, and G. Chen. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep. 31:349-360. Panda, D. and R. K. Sarkar. 2013. Characterization of leaf gas exchange and anti-oxidant defense of rice (Oryza sativa L.) cultivars differing in submergence tolerance owing to complete submergence and consequent re-aeration. Agric. Res. 2:301-308. Papdi, C., E. Ábrahám, M. P. Joseph, C. Popescu, C. Koncz, and L. Szabados. 2008. Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol. 147:528-542. Park, S. U., C. J. Lee, S. C. Park, K. J. Nam, K. L. Lee, S. S. Kwak, H. S. Kim, and Y. H. Kim. 2022. Flooding tolerance in sweet potato (Ipomoea batatas (L.) Lam) is mediated by reactive oxygen species and nitric oxide. Antioxidants 11:878. Paul, M. V., S. Iyer, C. Amerhauser, M. Lehmann, J. T. van Dongen, and P. Geigenberger. 2016. Oxygen sensing via the ethylene response transcription factor RAP2.12 affects plant metabolism and performance under both normoxia and hypoxia. Plant Physiol. 172:141-153. Perata, P. and A. Alpi. 1993. Plant responses to anaerobiosis. Plant Science 93:1-17. Perata, P. and L. A. C. J. Voesenek. 2007. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 12:43-46. Phukan, U. J., S. Mishra, and R. K. Shukla. 2014. Waterlogging and submergence stress: affects and acclimation. Crit. Rev. Biotechnol. 36: 956-966. Pierik, R., J. M. van Aken, and L. A. C. J. Voesenek. 2009. Is elongation-induced leaf emergence beneficial for submerged Rumex species? Ann. Bot. 103:353-357. Pospísil, P. 2009. Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1178:1151-1160. Pucciariello, C., V. Banti, and P. Perata. 2012. ROS signaling as common element in low oxygen and heat stresses. Plant Physiol. Biochem. 59:3-10. Rajput, V. D., Harish, R. K. Singh, K. K. Verma, L. Sharma, F. R. Quiroz-Figueroa, M. Meena, V. S. Gour, T. Minkina, S. Sushkova, and S. Mandzhieva. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 10:267. Raskin, I. and H. Kende. 1984. Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol. 76:947-950. Reisinger, S., M. Schiavon, N. Terry, and E. A. H. Pilon-Smits. 2008. Heavy metal tolerance and accumulation in indian mustard (Brassica Juncea L.) expressing bacterial γ-glutamylcysteine synthetase or glutathione synthetase. Int. J. Phytorem. 10:440-454. Ricroch, R., A. Yockteng, S. C. Brown, and S. Nadot. 2005. Evolution of genome size across some cultivated Allium species. Genome 48:511-520. Rijnders, J. G. H. M., Y. Y. Yang, Y. Kamiya, N. Takahashi, G. W. M. Barendse, C. W. P. M. Blom, and L. A. C. J. Voesenek. 1997. Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta 203:20-25. Sagi, M. and R. Fluhr. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141:336-340. Sakuma, Y., Q. Liu, J.G. Dubouzet, H. Abe, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290:998-1009. Santaniello, A., E. Loreti, S. Gonzali, G. Novi, and P. Perata. 2014. A reassessment of the role of sucrose synthase in the hypoxic sucrose-ethanol transition in arabidopsis. Plant Cell Environ. 37:2294-2302. Sarkar, R. K. and B. Bhattacharjee. 2011. Rice genotypes with SUB1 QTL differ in submergence tolerance, elongation ability during submergence and re-generation growth at re-emergence. Rice 5:7. Sasidharan, R., S. Hartman, Z. Liu, S. Martopawiro, N. Sajeev, H. van Veen, E. Yeung, and L. Voesenek. 2018. Signal dynamics and interactions during flooding stress. Plant Physiol 176:1106-1117. Sasidharan, R., J. Bailey-Serres, M. Ashikari, B. J. Atwell, T. D. Colmer, K. Fagerstedt, T. Fukao, P. Geigenberger, K. H. Hebelstrup, R. D. Hill, M. J. Holdsworth, A. M. Ismail, F. Licausi, A. Mustroph, M. Nakazono, O. Pedersen, P. Perata, M. Sauter, M. C. Shih, B. K. Sorrell, G. G. Striker, J. T. v. Dongen, J. Whelan, S. Xiao, E. J. W. Visser, and L. A. C. J. Voesenek. 2017. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 214:1403-1407. Sasidharan, R. and L. A. C. J. Voesenek. 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169: 3-12. Sasidharan, R., C. C. Chinnappa, L. A. C. J. Voesenek, and R. Pierik. The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. 2008. Plant Physiol. 148:1557-1569. Sauter, M. 2000. Rice in deep water: ‘how to take heed against a sea of troubles’. Naturwissenschaften 87:289-303. Sauter, M. 2013. Root responses to flooding. Curr. Opin. Plant Biol. 16:282-286. Scandalios, J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101:7-12. Setter, T.L., P. Bhekasut, and H. Greenway. 2010. Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42. Funct. Plant. Biol. 37:1096-1104. Setter, T. L., M. Ellis, E. V. Laureles, E. S. Ella, D. Senadhira, S. B. Mishra, S. Sarkarung, and S. Datta. 1997. Physiology and genetics of sub mergence tolerance in rice. Ann. Bot. 79:67-77. Setter, T. L. and E. V. Laureles. 1996. The beneficial effect of reduced elongation growth on submergence tolerance of rice. J. Exp. Bot. 47:1551-1559. Sewelam, N., K. Kazan, and P. M. Schenk. 2016. Global plant stress signaling: reactive oxygen species at the cross-road. Front. Plant Sci. 7:187. Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:217037. Shiffler, R. E. 1987. Maximum Z scores and outliers. American Statistician 42:79-80. Saika, H., M. Okamoto, K. Miyoshi, T. Kushiro, S. Shinoda, Y. Jikumaru, S. I. Arimura. 2007. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8’-hydroxylase in rice. Plant Cell Physiol. 48:287-298. Steffens, B., T. Geske, and M. Sauter. 2011. Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol. 190:369-378. Steffens, B., A. Steffen-Heins, and M. Sauter. 2013 Reactive oxygen species mediate growth and death in submerged plants. Front. Plant Sci. 4:179. Stepanova, A. N. and J. M. Alonso. 2009. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 12:548-555. Storey, J. D. 2003. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann. Statist. 31:2013-2035. Strickler, S. R., A. Bombarely, and L. A. Mueller. 2012. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am. J. Bot. 99:257-266. Sun, L., L. Ma, S. He, and F. Hao. 2018. AtrbohD functions downstream of ROP2 and positively regulates waterlogging response in Arabidopsis. Plant Signal. Behav. 13:e1513300. Sun, X. D., X. H. Yu, S. M. Zhou, and S. Q. Liu. 2016. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology. Mol. Genet. Genom. 291:647-659. Tamang, B. G. and T. Fukao. 2015. Plant adaptation to multiple stresses during submergence and following desubmergence. Int. J. Mol. Sci. 16:30164-30180. Tamang, B. G., J. O. Magliozzi, and M. A. S. Maro. 2014. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ. 37:2350-2365. Tang, H., H. Bi, B. Liu, S. Lou, Y. Song, S. Tong, N. Chen, Y. Jiang, J. Liu, and H. Liu. 2021. WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thaliana. New Phytol. 229:106-125. Toojinda, T., M. Siangliw, S. Tragoonrung, and A. Vanavichit. 2003. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann. Bot. 91:243-253. Torres, M. A. and J. L. Dangl. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397-403. Torres, M. A., H. Onouchi, S. Hamada, C. Machida, K. E. Hammond-Kosack, and J. D. G. Jones. 1998. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14:365-370. Tsai, K. J., S. J. Chou, and M. C. Shih. 2014. Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis reoxygenation. Plant Cell Environ. 37:2391-2405. Tyagi, A., S. Ali, S. Park, and H. Bae. 2023. Exploring the potential of multiomics and other integrative approaches for improving waterlogging tolerance in plants. Plants 12:1544. Ushimaru, T., M. Shibasaka, and H. Tsuji. 1992. Development of the O2--detoxification system during adaptation to air of submerged rice seedlings. Plant Cell Physiol. 33:1065-1071. Van Der Straeten, D., Z. Zhou, E. Prinsen, H. A. Van Onckelen, M. C. Van Montagu. 2001. A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol. 125: 955-968. Van Eck, W. H. J. M., H. M. Van De Steeg, C. W. P. M. Blom, and H. De Kroon. 2004. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos 107:393-405. van Veen, H., A. Mustroph, G. A. Barding, M. V. -v. Eijk, R. A. M. Welschen-Evertman, O. Pedersen, E. J. W. Visser, C. K. Larive, R. Pierik, J. Bailey-Serres, L. A. C. J. Voesenek, and R. Sasidharan. 2013. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25:4691-4707. Vartapetian, B. B. and M. B. Jackson. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79:3-20. Voesenek, L. A. C. J. and J. Bailey-Serres. 2015. Flood adaptive traits and processes: an overview. New Phytol. 206:57-73. Voesenek, L. A. C. J., J. H. G. M. Rijnders, A. J. M. Peeters, H. M. van de Steeg, H. de Kroon. 2004. Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology 85:16-27. Voesenek, L. A. C. J. and R. Sasidharan. 2013. Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biol. 15:426-435. Vreeburg, R. A. M., J. J. Benschop, A. J. M. Peeters, T. D. Colmer, A. H. M. Ammerlaan, M. Staal, T. M. Elzenga, R. H. J. Staals, C. P. Darley, S. J. McQueen-Mason, and L. A. C. J. Voesenek. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. 2005. Plant J. 43: 597-610. Vriezen, W. H., R. Hulzink, C. Mariani, and L. A. C. J. Voesenek. 1999. 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in rumex palustrisduring submergence. Plant Physiol. 121:189-196. Wang, J., Z. Zhang, and R. Huang. 2013. Regulation of ascorbic acid synthesis in plants. Plant Signal. Behav. 8:e24536. Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63. White, M. D., M. Klecker, R. J. Hopkinson, D. A. Weits, C. Mueller, C. Naumann, R. O’Neill, J. Wickens, J. Yang, J. C. Brooks-Bartlett, E. F. Garman, T. N. Grossmann, N. Dissmeyer, and E. Flashman. 2017. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 8:14690. Xiong, L. and J. K. Zhu. 2003. Regulation of abscisic acid biosynthesis. Plant Physiol. 133:29-36. Wu, Y.-S. and C.-Y. Yang. 2016. Physiological responses and expression profile of NADPH oxidase in rice (Oryza sativa) seedlings under different levels of submergence. Rice 9:2. Xu, K. and D.J. Mackill. 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 2:219-224. Xu, K., X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A.M. Ismail, J. Bailey-Serres, P.C. Ronald, and D.J. Mackill. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705-708. Yeung, E., B. S. Julia, and R. Sasidharan. 2019. After the deluge: plant revival post-flooding. Trends Plant Sci. 24:443-454. Yeung, E., H. van Veen, D. Vashisht, A. L. S. Paiva, M. Hummel, T. Rankenberg, B. Steffens, A. Steffen-Heins, M. Sauter, M. d. Vries, R. C. Schuurink, M. Bazin, J. Bailey-Serres, L. A. C. J. Voesenek, and R. Sasidharan. 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 115:E6085-E6094. Yingyin Yao, G. G., Z. Ni, R. Sunkar, J. Du, J. K. Zhu, and Q. Sun. 2007. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8:R96. Yiu, J. C., C. W. Liu, D. Y. T. Fang, and Y. -S. Lai. 2009. Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiol. Biochem. 47:710-716. Yiu, J. C., C. W. Liu, C. T. Kuo, M. J. Tseng, Y. S. Lai, and W. J. Lai. 2008. Changes in antioxidant properties and their relationship to paclobutrazol-induced flooding tolerance in Welsh onion. Food Agric. 88:1222-1230. Yuan, L. B., Y. S. Dai, L. J. Xie, L. J. Yu, Y. Zhou, Y. X. Lai, Y. C. Yang, L. Xu, Q. F. Chen, and S. Xiao. 2017. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiol. 173:1864-1880. Zhao, H., C. C. Yin, B. Ma, S. Y. Chen, and J. S. Zhang. 2021. Ethylene signaling in rice and Arabidopsis: new regulators and mechanisms. J. Integr. Plant Biol. 63:102-125. Zhao, Y., W. Zhang, S. F. Abou-Elwafa, S. Shabala, and L. Xu. 2021. Understanding a mechanistic basis of aba involvement in plant adaptation to soil flooding: the current standing. Plants 10:1982. Zhou, W., F. Chen, Y. Meng, U. Chandrasekaran, X. Luo, W. Yang, and K. Shu. 2020. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol. Biochem. 148:228-236. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90693 | - |
| dc.description.abstract | 青蔥(Allium fistulosum L.)在台灣容易遭受颱風與強降雨造成的淹水逆境,使生產受阻,然而青蔥的耐淹水性評估與其生理機制之研究資訊相當有限。本研究探討台灣常見的青蔥栽培品種‘三星蔥’ (‘Sanxingcong’)及‘北蔥’ (‘Beicong’)於淹水逆境下的反應,從外觀性狀、內部抗氧化生理反應,及缺氧相關基因之表現量,探討青蔥之耐淹水性與淹水逆境下之生理調控機制。‘北蔥’在淹水及退水後的復氧期間具有比‘三星蔥’佳的生長勢,推測‘北蔥’為較耐淹水品種。淹水導致的缺氧逆境及退水後回復期造成的氧化逆境會增加活性氧化物(reactive oxygen species, ROS)的產生,其中‘三星蔥’具有較高之過氧化氫(hydrogen peroxide, H2O2)含量。在抗氧化能力方面,‘北蔥’的抗壞血酸(ascorbic acid, AsA)相對含量在復氧期間高於‘三星蔥’,丙二醛(malondialdehyde, MDA)含量較‘三星蔥’低。抗氧化酵素活性方面,‘北蔥’之抗壞血酸過氧化酶(ascorbate peroxidase, APX)活性較‘三星蔥’高。為了解青蔥於淹水及復氧期間之基因表現變化,本研究藉由次世代核醣核酸定序分析進行青蔥轉錄體之從頭組裝定序,共獲得120,076個被註釋的unigenes。分析缺氧反應相關基因表現之結果顯示,乙烯反應因子(ethylene response factor, ERF) ERF5、ERF4及ERFVIIs家族的RAP2.12在兩青蔥品種淹水6小時後表現提升,其中‘三星蔥’的ERF5表現量在淹水及復氧期間均較‘北蔥’高;無氧呼吸相關基因ALCOHOL DEHYDROGENASE1(ADH1)在‘北蔥’淹水6小時後具有明顯的上調,推測北蔥具有在淹水逆境下維持能量生產的能力;‘三星蔥’於淹水後具較高的ROS生合成基因RESPIRATION BURST OXIDASE HOMOLOG D (ROBHD)表現量,可能與其累積較多之ROS相關。綜觀所述,造成兩青蔥品種耐淹水性差異之原因可能來自於抗氧化能力與無氧呼吸的誘導。本研究有助於理解青蔥抵抗淹水逆境之機制,並建立青蔥耐淹水性狀之篩選平台,其中假莖長、相對含水量、H2O2、MDA、AsA含量、APX活性具有做為耐淹水青蔥篩選指標之潛力。 | zh_TW |
| dc.description.abstract | Welsh onion (Allium fistulosum L.) yields are often reduced due to flooding stress caused by typhoons and intense rainfall in Taiwan. However, the research on the physiological mechanisms of Welsh onion under flooding is limited. This study aims to explore the response of two Taiwan common Welsh onion varieties, ‘Sanxingcong’ and ‘Beicong’, after submergence. The phenotypes, antioxidant physiology, and hypoxia-related gene expression were measured to evaluate the flooding tolerance and physiology regulatory mechanism of Welsh onion. 'Beicong' was verified as a submergence-tolerant cultivar with its better shoot growth after submergence. Hypoxia stress caused by submergence and oxidative stress during reoxygenation after submergence will increase reactive oxygen species (ROS) generation. To survey the content of reactive oxygen species, and superoxide anion (O2-) was observed with nitro blue tetrazolium chloride (NBT). O2- accumulation started in the leaf tips of ‘Sanxingcong’ after submergence for 24 hours. For antioxidant ability, ‘Beicong’ has higher relative content of ascorbic acid (AsA) than ‘Sanxingcong’ during reoxygenation, and the content of malondialdehyde (MDA) is lower in contrast. Ascorbate peroxidase (APX) activity in ‘Beicong’ is higher than in ‘Sanxingcong’. To identify gene expression during submergence and desubmergence, the transcriptome of Welsh onion was sequenced using next generation RNA sequencing (RNA-Seq) technology. After de novo assembly, a total of 120,076 annotated unigenes were obtained. Genes related to hypoxia response, including ETHYLENE RESPONSE FACTOR 5 (ERF5), ERF4 and the group ERFVIIs family gene RAP2.12 were up regulated after submergence for 6 hours in two Welsh onion cultivars. ‘Sanxingcong’ have higher ERF5 expression during submergence and desubmergence. Fermentation related gene ALCOHOL DEHYDROGENASE1 (ADH1) was highly enriched in ‘Beicong’ after submergence for 6 hours, which is evaluated that ‘Beicong’ can keep producing energy by fermentation when suffering from flooding stress. The expression level of ROS synthesis gene RESPIRATION BURST OXIDASE HOMOLOG D (ROBHD) was higher in ‘Sanxingcong’, which might relate to the higher accumulation of ROS. In summary, the reasons contributing to the different flooding tolerance between two Welsh onions may be the antioxidant ability and the induction of anaerobic respiration. This study contributes to understanding the regulatory mechanism of Welsh onion in response to flooding stress and to setting the selection platform of flooding tolerance in Welsh onion. The indicators such as pseudostem length, pseudostem width, relative water content (RWC), the content of H2O2, MDA and AsA, and activity of APX are potential markers for submergence tolerant selection to Welsh onion. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:12:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:12:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 ix 附錄目錄 x 前言 1 第一章 前人研究 2 一、台灣青蔥之栽培現狀 2 二、淹水逆境對植物造成的型態與生理影響 3 三、缺氧感應與ERFVIIs 5 四、水稻的逃逸和靜止策略 6 五、ROS與氧化逆境 8 六、植物抗氧化系統在淹水逆境下與復氧期間之表現 9 七、RNA-Seq的發展與應用 10 第二章 材料與方法 13 一、植物材料與處理方式 13 二、植物性狀調查 13 三、超氧陰離子(superoxide anion) nitro blue tetrazolium chloride (NBT)染色法 14 四、過氧化氫(hydrogen peroxide)萃取與定量分析 15 五、丙二醛(malondialdehyde, MDA)含量測定 15 六、抗壞血酸(ascorbate acid, AsA)含量測定 16 七、抗氧化酵素活性測定 16 (一)抗壞血酸過氧化物酶(ascorbate peroxidase, APX)活性測定 16 (二)過氧化氫酶(catalase, CAT)活性測定 17 (三)癒創木酚過氧化物酶(guaiacol peroxidase)活性測定 17 八、可溶性蛋白濃度測定 18 九、基因表現量測定 18 (一)萃取核醣核酸(RNA extraction) 18 (二)反轉錄(reverse transcription) 18 (三)聚合酶連鎖反應(polymerase chain reaction, PCR) 19 (四)即時定量聚合酶連鎖反應(real-time quantitative polymerase chain reaction, qPCR) 19 十、轉錄組定序(RNA-Seq)分析 20 十一、數據作圖與統計分析 20 第三章 結果 22 一、兩栽培品種青蔥淹水後之性狀變化 22 二、氧化逆境傷害 23 三、淹水初期與退水後的抗氧化能力 24 四、RNA-Seq結果品質檢測 25 五、差異表達基因分析 26 六、淹水及復氧期缺氧相關基因表達之變化 26 第四章 討論 29 一、完全淹沒與復氧期間青蔥之外觀表現 29 二、復氧期的脫水與氧化逆境 30 三、抗氧化策略 31 四、淹水及復氧期間之基因表現變化 32 (一)缺氧感應 32 (二)代謝與發酵相關基因 33 (三)ROS產生與平衡 33 (四)生長激素與細胞壁修飾 34 第五章 結論 6 結果圖表 37 附錄 51 參考文獻 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 青蔥 | zh_TW |
| dc.subject | 氧化逆境 | zh_TW |
| dc.subject | 淹水逆境 | zh_TW |
| dc.subject | 抗氧化系統 | zh_TW |
| dc.subject | 核醣核酸定序分析 | zh_TW |
| dc.subject | flooding stress | en |
| dc.subject | oxidative stress | en |
| dc.subject | antioxidant system | en |
| dc.subject | Welsh onion | en |
| dc.subject | RNA sequencing | en |
| dc.title | 青蔥幼苗於淹水及復氧期間之轉錄與生理變化 | zh_TW |
| dc.title | Transcriptional and Physiological Changes During Flooding and Post-submergence Reoxygenation in Welsh onion (Allium fistulosum L.) Seedlings | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳賢明 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-I Lin;Hieng-Ming Ting | en |
| dc.subject.keyword | 青蔥,淹水逆境,氧化逆境,抗氧化系統,核醣核酸定序分析, | zh_TW |
| dc.subject.keyword | Welsh onion,flooding stress,oxidative stress,antioxidant system,RNA sequencing, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202303830 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2028-08-09 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-08-09 | 2.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
