Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90672
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭zh_TW
dc.contributor.advisorChin-Tin Chenen
dc.contributor.author紀雨彤zh_TW
dc.contributor.authorYu-Tung Chien
dc.date.accessioned2023-10-03T17:07:11Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationBarber, M. and P. M. Waterworth (1966). "Activity of gentamicin against Pseudomonas and hospital Staphylococci." British Medical Journal 1(5481): p. 203-205.
Dorati, R., et al. (2018). "Gentamicin sulfate PEG-PLGA/PLGA-H nanoparticles: screening design and antimicrobial effect evaluation toward clinic bacterial isolates." Nanomaterials (Basel) 8(1): p. 37-56.
Phillips, I., et al. (1977). "The in vitro antibacterial activity of nine aminoglycosides and spectinomycin on clinical isolates of common Gram-negative bacteria." Journal of Antimicrobial Chemotherapy 3(5): p. 403-410.
Fitzgerald, K. T. and K. L. Newquist (2013). Chapter 20 - Poisonings in the Captive Reptile. Small Animal Toxicology (Third Edition). M. E. Peterson and P. A. Talcott. Saint Louis, W.B. Saunders: 229-249.
Chaves BJ, Tadi P. Gentamicin. [Updated 2023 Apr 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from:https://www.ncbi.nlm.nih.gov/books/NBK557550/
Riester, O., et al. (2022). "Synergy of R-(-)carvone and cyclohexenone-based carbasugar precursors with antibiotics to enhance antibiotic potency and inhibit biofilm formation." Scientific Reports 12(1): p. 18019-18031.
Koo, H. B. and J. Seo (2019). "Antimicrobial peptides under clinical investigation." Peptide Science 111(5): e24122.
Duong, L., et al. (2021). "Developing antimicrobial synergy with AMPs." Front Med Technol 3: p. 640981-640988.
Yoon, B. K., et al. (2018). "Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications." International Journal of Molecular Sciences 19(4), 1114.
Chen, Y. E. and H. Tsao (2013). "The skin microbiome: current perspectives and future challenges." Journal of the American Academy of Dermatologyl 69(1): p. 143-155.
Zheng, C. J., et al. (2005). "Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids." FEBS Letters 579(23): p. 5157-5162.
Bergsson, G., et al. (2002). "Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori." International Journal of Antimicrobial Agents 20(4): p. 258-262.
Desbois, A. P. and V. J. Smith (2010). "Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential." Applied Microbiology and Biotechnology 85(6): p. 1629-1642.
National Center for Biotechnology Information. "PubChem Compound Summary for CID 445639, Oleic Acid" PubChem, Accessed 28 June, 2023.
Stenz, L., et al. (2008). "Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus." FEMS Microbiology Letters 287(2): p. 149-155.
Huang, C. B., et al. (2010). "Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms." Arch Oral Biology 55(8): p. 555-560.
Speert, D. P., et al. (1979). "Bactericidal effect of oleic acid on group A streptococci: mechanism of action." Infection and Immunity 26(3): p. 1202-1210.
Robert, J., et al. (2006). "Gentamicin-susceptible or gentamicin-resistant methicillin-resistant staphylococcus aureus a case-case study." Infection Control & Hospital Epidemiology 27(8): p. 879-883.
Atashbeyk, D. G., et al. (2014). "Eradication of methicillin-resistant staphylococcus aureus infection by nanoliposomes loaded with gentamicin and oleic acid." Pharmaceutical Biology 52(11): p. 1423-1428.
Mehanna, M., et al. (2012). "Pharmaceutical particulate carriers: lipid-based carriers." National Journal of Physiology, Pharmacy and Pharmacology 2(1): p. 10-22.
Torchilin, V. P. (2006). "Multifunctional nanocarriers." Advanced Drug Delivery Reviews 58(14): p. 1532-1555.
Din, F. U., et al. (2017). "Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors." International Journal of Nanomedicine 12: p. 7291-7309.
Kumar, R., et al. (2022). "Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect." Journal of Drug Delivery Science and Technology 74: p. 103526-103542.
Bangham, A. D., et al. (1965). "Diffusion of univalent ions across the lamellae of swollen phospholipids." Journal of Molecular Biology 13(1): 238-252.
Riaz, M. K., et al. (2018). "Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A Review." International Journal of Molecular Sciences 19(1): p. 195-221.
Bulbake, U., et al. (2017). "Liposomal formulations in clinical use: An updated review." Pharmaceutics 9(2): P. 12-44.
Liu, P., et al. (2022). "A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives." Molecules 27(4): p.1372-1394.
Zhu, C. T., et al. (2010). "Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity." Drug Delivery 17(6): p. 391-398.
Gbian, D. L. and A. Omri (2021). "The impact of an efflux pump inhibitor on the activity of free and liposomal antibiotics against pseudomonas aeruginosa." Pharmaceutics 13(4): p. 577-594
Ahmed, K. S., et al. (2019). "Liposome: composition, characterisation, preparation, and recent innovation in clinical applications." Journal of Drug Targeting 27(7): p. 742-761.
Gonzalez Gomez, A., et al. (2019). "Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics." ACS Omega 4(6): p. 10866-10876.
Supramaniam, P., et al. (2019). "Microfluidics for artificial life: techniques for bottom-up synthetic biology." Micromachines 10(5): p. 299-325.
Ugrinic, M., et al. (2019). "Microfluidic tools for bottom-up synthetic cellularity." Chem 5(7): p. 1727-1742.
Rungta, R. L., et al. (2013). "Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain." Molecular Therapy Nucleic Acids 2(12): p. 2162-2531.
Shepherd, S. J., et al. (2021). "Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device." Nano Letters 21(13): p. 5671-5680.
Juran, J. M. and J. Juran (1992). Juran on quality by design: the new steps for planning quality into goods and services, Simon and Schuster.
Kumar, R., et al. (2022). Quality by design in pharmaceutical development. computer aided pharmaceutics and drug delivery: an application guide for students and researchers of pharmaceutical sciences. V. A. Saharan. Singapore, Springer Nature Singapore: 99-127.
Yu, L. X., et al. (2014). "Understanding pharmaceutical quality by design." AAPS Journal 16(4): p. 771-783.
Bastogne, T. (2017). "Quality-by-design of nanopharmaceuticals – a state of the art." Nanomedicine: Nanotechnology, Biology and Medicine 13(7): p. 2151-2157.
Grangeia, H. B., et al. (2020). "Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives." European Journal of Pharmaceutics and Biopharmaceutics 147: p. 19-37.
Wagner, J. R., et al. (2014). 25 - Design of Experiments. Extrusion (Second Edition). J. R. Wagner, E. M. Mount and H. F. Giles. Oxford, William Andrew Publishing: p. 291-308.
Yuangyai, C. and H. B. Nembhard (2010). Chapter 8 - Design of Experiments: A Key to Innovation in Nanotechnology. Emerging nanotechnologies for manufacturing. W. Ahmed and M. J. Jackson. Boston, William Andrew Publishing: p. 207-234.
Beg, S. (2021). Mixture designs and their applications in pharmaceutical product development. design of experiments for pharmaceutical product development: Volume I : Basics and fundamental principles. S. Beg. Singapore, Springer Singapore: p. 87-96.
Galvan, D., et al. (2021). "Recent applications of mixture designs in beverages, foods, and pharmaceutical health: A systematic review and meta-analysis." Foods 10(8): p. 1941-1968.
Gubernator, J., et al. (2006). "A simply and sensitive fluorometric method for determination of gentamicin in liposomal suspensions." International Journal of Pharmaceutics 327(1): p. 104-109.
Dilika, F., et al. (2000). "Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites." Fitoterapia 71(4): p. 450-452.
Li, J., et al. (2017). "Membrane active antimicrobial peptides: Translating mechanistic insights to design." Frontiers in Neuroscience 11: p. 73-90.
Wang, W., et al. (2020). "In vitro antibacterial activities and mechanisms of action of fatty acid monoglycerides against four foodborne bacteria." Journal of Food Protection 83(2): p. 331-337.
Eckschlager, T., et al. (2017). "Histone deacetylase inhibitors as anticancer drugs." International Journal of Molecular Sciences 18(7): p. 1414-1441.
Monteiro, N., et al. (2015). "Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin." Acta Biomaterialia 18: p. 196-205.
Lee, C. Y., et al. (2023). "Formulation development of doxycycline-loaded lipid nanocarriers using microfluidics by QbD approach." Journal of Pharmaceutical Sciences 112(3): p. 740-750.
Xu, L., et al. (2022). "Lipid nanoparticles for drug delivery." Advanced NanoBiomed Research 2(2): 2100109.
D’Souza, S. (2014). "Areview of in vitro drug release test methods for nano-sized dosage forms." Advances in Pharmaceutics 2014: 304757, 12 pages.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90672-
dc.description.abstract紫菌素(Gentamicin)是一種廣效性的胺基醣苷類抗生素,能夠用於治療多種細菌感染,如治療外耳炎和皮膚感染。紫菌素的半衰期較短、生物利用度低,過量的紫菌素容易造成嚴重的副作用。為增加其療效,透過添加佐劑共同作用或是將紫菌素包裹在載體中,皆有利於降低紫菌素所需的劑量及可能造成的副作用。油酸(oleic acid)是一種天然存在於各種動植物脂肪和油中的脂肪酸。本研究的第一個部份透過最低抑菌濃度(minimum inhibitory concentration)及最低殺菌濃度(minimum bactericidal concentration)實驗發現紫菌素和油酸的組合能增強對革蘭式陽性菌的抑菌及殺菌能力。
奈米載體由於它的表面積比例高,能夠改變藥物的基本性質和生物活性。將紫菌素包裹在載體中有助於延長藥物釋放時間以及降低毒性來幫助紫菌素的治療。本研究第二個部份先以薄膜水合法製備包埋紫菌素的微脂體(liposome),探討不同脂質成分的微脂體對紫菌素載藥能力的差異。結果顯示使用不帶電的磷脂對紫菌素的包覆能力均低於10%,而使用帶負電的磷脂EPG為主要成分製備出的微脂體因為電性的關係,能夠有效吸引並包埋帶正電的紫菌素,使包覆效率增加至72%。但在MIC及藥物釋放實驗中發現經由薄膜水合法所製備的紫菌素微脂體(gentamicin-loaded liposome)對於細菌抑制能力及藥物釋放效率皆不佳。
為了得到有抑菌能力的脂質載體,本研究進一步利用微流道系統製備以EPG為主要脂質成分的脂質載體(LNC)。相較於gentamicin-loaded liposome,包埋在LNC的紫菌素具有較低的MIC數值。但與游離態的紫菌素相比,LNC載體中的紫菌素對於細菌的抑菌作用還是不理想。因此,為改善gentamicin-loaded LNC在藥物釋放效率及抑菌能力不佳的問題,本實驗進一步利用實驗設計(Design of Experiment)的方法進行優化,發展出具有較好抑菌效果的最佳化脂質組成配方。透過實驗設計中的混合設計模型得到最佳脂質組成比例,成功的提高了LNC的藥物釋放效率以及對細菌的抑菌能力。
zh_TW
dc.description.abstractGentamicin is an aminoglycoside antibiotic which can be used to treat various bacterial infections, such as otitis externa and skin infections. However, gentamicin has short half-life and low bioavailability. The excessive use of gentamicin may lead to severe side effects, such as ototoxicity and nephrotoxicity. To increase the therapeutic efficacy, gentamicin combined with adjuvants or encapsulated in nanocarriers could be used to reduce the side effects. Oleic acid, a fatty acid present in various animal fats and plant oils, has been found to exhibit synergistic effects with gentamicin. In this study, we found that the combination of gentamicin and oleic acid could enhance the antibacterial and bactericidal activity against gram-positive bacteria through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) test.
Nanocarriers, with their high surface area ratio, can alter the fundamental properties and bioactivity of drugs, improving pharmacokinetics and biodistribution, reducing toxicity, and the release of therapeutic agent. Gentamicin encapsulated in nanocarriers can modulate the drug release time and reduce toxicity. The second part of this study is to prepare gentamicin-loaded liposomes with different lipid compositions using the thin-film hydration method. The results showed that the encapsulation efficiency of gentamicin using non-charged phospholipids was less than 10%. Due to the electrostatic interaction, liposomes compose of negatively charged phospholipid egg phosphatidylglycerol (EPG) had an increased encapsulation efficiency of 72%. However, the prepared gentamicin-loaded liposomes exhibit poor bacterial inhibition ability and drug release efficiency.
In order to obtain lipid carriers with higher antibacterial capability, we utilized a microfluidic system to prepare lipid-based nanocarriers (LNC) containing EPG. However, the MIC values of gentamicin-loaded LNC was higher than that of free-form gentamicin. Therefore, we further employed the Design of Experiment (DoE) method to optimize the development of gentamicin-loaded LNC, aiming to increase the drug release efficiency and bactericidal activity. By using the mixture design model, the optimal lipid composition ratio was determined. The resulted gentamicin-loaded LNC has significantly enhanced the drug release efficiency and antibacterial activity against bacteria.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:07:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:07:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 紫菌素(Gentamicin) 1
1.1.1 抗生素協同作用 2
1.2 脂肪酸抗菌活性 2
1.2.1 油酸(Oleic acid) 3
1.2.2 油酸和gentamicin加成效果 3
1.3 藥物遞送系統(Drug Delivery System) 3
1.3.1 脂質奈米載體(Lipid-based nanocarriers, LNC) 4
1.3.2 微脂體(Liposome) 5
1.3.3 Gentamicin liposome 6
1.4 脂質奈米載體的製備 6
1.4.1 由上而下的方式(Top-down approach) 6
1.4.2 由下而上的方式(Bottom-up approach) 7
1.5 質量源於設計(Quality by Design, QbD) 7
1.5.1 實驗設計(Design of Experiments, DoE) 8
1.5.2 混合設計(Mixture design) 9
1.6 研究動機與目的 10
第二章 材料與方法 11
2.1 藥品 11
2.2 儀器 12
2.3 菌種來源與保存 14
2.3.1 菌種來源 14
2.3.2 菌種活化 14
2.3.3 菌種保存 14
2.4 軟體 15
2.5 微脂體(Liposome)製備 15
2.6 微流體系統製備脂質載體(Lipid nanocarriers) 15
2.7 脂質載體粒徑分析及zeta電位 16
2.8 Gentamicin定量 16
2.9 脂質定量分析 17
2.10 包覆率計算(Encapsulation Efficiency, EE%) 17
2.11 藥物與脂質比計算(Drug to lipid ratio, D/L ratio) 17
2.12 最小抑菌濃度(Minimum inhibitory concentration, MIC)試驗 18
2.12.1 細菌製備 18
2.12.2 藥物製備 18
2.12.3 接種細菌 18
2.13 最小殺菌濃度(Minimum bactericidal concentration, MBC)試驗 18
2.14 藥物釋放實驗 19
2.15 LNC的優化 19
2.16 冷凍電子顯微術(Cryo-electron microscopy, cryo-EM) 19
第三章 結果與討論 20
3.1 油酸對gentamicin的加成效果 20
3.1.1 金黃色葡萄球菌 20
3.1.2 綠膿桿菌 21
3.2 薄膜水合法製備包埋gentamicin的微脂體 22
3.2.1 不帶電磷脂質 22
3.2.2 帶負電磷脂質 23
3.2.3 不同脂質成分的gentamicin liposome比較 24
3.3 Gentamicin 的MIC及MBC試驗 24
3.3.1 Free-form gentamicin 24
3.3.2 Gentamicin liposome 25
3.4 微流體系統製備包埋gentamicin的脂質載體 25
3.4.1 Gentamicin LNC的製備 25
3.4.2 Gentamicin LNC的MIC 25
3.4.3 Gentamicin LNC加上油酸組合的MIC 26
3.5 Gentamicin liposome和gentamicin LNC的比較 26
3.6 脂質載體的藥物釋放效率實驗 27
3.7 脂質載體的冷凍電子顯微鏡結果 28
3.7.1 更新製備方式後的gentamicin lipsome結構 29
3.8 Gentamicin LNC的優化 29
3.8.1 實驗設計假說 29
3.8.2 各組分析討論 31
3.8.3 優化後的脂質比例 32
3.8.4 脂質載體優化前後的比較 33
3.8.5 優化後的脂質載體冷凍電顯結果 34
第四章 結論 35
第五章 未來展望 36
參考文獻 85
-
dc.language.isozh_TW-
dc.title利用微流體技術開發載有紫菌素的脂質奈米載體zh_TW
dc.titleDevelopment of Gentamicin-Loaded Lipid-Based Nanocarriers by Microfluidicsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳亘承;蔡翠敏zh_TW
dc.contributor.oralexamcommitteeHsuan-Chen Wu;Tsui-Min Tsaien
dc.subject.keyword紫菌素,微脂體,油酸,MIC,微流體,zh_TW
dc.subject.keywordgentamicin,liposome,oleic acid,MIC,microfluidics,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202302827-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2028-08-14-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
3.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved