Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90667
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許鶴瀚zh_TW
dc.contributor.advisorHo-Han Hsuen
dc.contributor.author許堯zh_TW
dc.contributor.authorYao Hsuen
dc.date.accessioned2023-10-03T17:05:46Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-06-29-
dc.identifier.citation中文部分:
陳郁凱、蘇博堃、吳繼倫(2015)。臺灣周邊海域水溫垂直分布之季節變化,水試專訊,第51期,45-56頁。
江協堂(2010)。台灣東北部宜蘭平原及龜山島之地熱研究。博士論文。國立臺灣大學海洋研究所,臺北市。
林聖龍(2018)。南沖繩海槽仿三維震測資料處理與應用。碩士論文。國立臺灣大學海洋研究所,臺北市。
李信宏(2008)。臺灣西南海域之天然氣水合物穩定帶底部與沉積物熱導係數異常之探討。碩士論文。國立臺灣大學海洋研究所,臺北市。
吳俊鼐(2016)。海床地熱資料處理新演算法及西南海域燦堯泥火山熱模型。碩士論文。國立臺灣大學海洋研究所,臺北市。
謝宜廷(2020)。利用海底仿擬反射訊號深度估算台灣西南海域地溫梯度分布研究。碩士論文。國立中央大學地球科學學系,桃園市。
蘇志杰(2019)。臺灣東北海域礦產資源潛能調查—震測及地熱流調查研究(4/4):反射震測與海床聲納回聲剖面調查研究。經濟部中央地質調查所報告第108-15號,計畫編號108-5226904000-03-03,共212頁。
劉家瑄(2019)。臺灣東北海域礦產資源潛能調查—地球化學與海床觀測調查研究(4/4):總論。經濟部中央地質調查所報告第108-13-A號,計畫編號108-5226904000-03-01,共70頁。
英文部分:
Barrer, R. M., & Stuart, W. I. (1957). Non-stoicheiometric clathrate compounds of water. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 243(1233), 172-189.
Bullard, E. (1954). The Flow of Heat through the Floor of the Atlantic Ocean, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 222(1150), 408–429, doi:10.1098/rspa.1954.0085.
Carslaw, H. S., & J. C. Jaeger (1959). Conduction of heat in solids, 2nd. Oxford University Press, London, 510p.
Chen, L., Chi, W.-C., Liu, C.-S., Shyu, C.-T., Wang, Y., & Lu, C.-Y. (2012). Deriving regional vertical fluid migration rates offshore southwestern Taiwan using bottom-simulating reflectors. Marine Geophysical Research, 33(4), 379-388. https://doi.org/10.1007/s11001-012-9162-4
Chen, L., Chiang, H.-T., Wu, J.-N., Chiao, L.-Y., Shyu, C.-T., Liu, C.-S., Wang, Y., & Chen, S.-C. (2020). The focus thermal study around the spreading center of southwestern Okinawa trough. Tectonophysics, 796, 228649. https://doi.org/10.1016/j.tecto.2020.228649
Davis, E. E., Hyndman, R. D., & Villinger, H. (1990). Rates of fluid expulsion across the Northern Cascadia Accretionary Prism: Constraints from new heat row and multichannel seismic reflection data. Journal of Geophysical Research: Solid Earth, 95(B6), 8869-8889.
Dong, M., Zhang, J., Xu, X., & Wu, S.-G. (2018). The differences between the measured heat flow and BSR heat flow in the Shenhu gas hydrate drilling area, northern South China Sea. Energy Exploration & Exploitation, 37(2), 756-769. https://doi.org/10.1177/0144598718793907
Ehlers, T.A. & Farley, K.A. (2003). Apatite (U–Th) / He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206(1-2), 1-14
Ganguly, N., Spence, G. D., Chapman, N. R., & Hyndman, R. D. (2000). Heat flow variations from bottom simulating reflectors on the Cascadia margin. Marine Geology, 164(1-2), 53-68. https://doi.org/Doi 10.1016/S0025-3227(99)00126-7
Hsu, H.-H., Lin, L.-F., Liu, C.-S., Chang, J.-H., Liao, W.-Z., Chen, T.-T., Chao, K.-H., Lin, S.-L., Hsieh, H.-S., & Chen, S.-C. (2019). Pseudo-3D seismic imaging of Geolin Mounds hydrothermal field in the Southern Okinawa Trough offshore NE Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 30, 705-716.
Hyndman, R. D., E. E. Davis, & J. A. Wright (1979). The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity, Marine Geophysical Researches, 4(2), 181–205.
Hyndman, R. D., & Davis, E. E. (1992). A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research: Solid Earth, 97(B5), 7025-7041. https://doi.org/10.1029/91JB03061
Jaeger, J. (1956). Conduction of Heat in an Infinite Region Bounded Internally by a Circular Cylinder of a Perfect Conductor, Australian Journal of Physics, 9(2), 167–179.
Jung, B., Garven, G., & Boles, J. R. (2014). Effects of episodic fluid flow on hydrocarbon migration in the Newport‐Inglewood Fault Zone, Southern California. Geofluids, 14(2), 234-250.
Katz, D.L., Cornell, D., Kobayashi, R., Poettmann, F.H., Vary, J.A., Elenbaas, J.R., & Weinaug, C.F. (1959). Handbook of Natural Gas Engineering, McGraw-Hill, New York, p802.
Kimura, M. (1985). Back-arc rifting in the Okinawa Trough. Marine and Petroleum Geology, 2(3), 222-240.
Liu, B., Li, S.-Z., Suo, Y.-H., Li, G.-X., Dai, L.-M., Somerville, I. D., Guo, L.-L., Zhao, S.-J., & Yu, S. (2016). The geological nature and geodynamics of the Okinawa Trough, Western Pacific. Geological Journal, 51(S1), 416-428. https://doi.org/10.1002/gj.2774
Masaki, Y., Kinoshita, M., Inagaki, F., Nakagawa, S., & Takai, K. (2011). Possible kilometer-scale hydrothermal circulation within the Iheya-North field, mid-Okinawa Trough, as inferred from heat flow data. JAMSTEC Report of Research and Development, 12, 1-12.
Nishizawa, A., Kaneda, K., Oikawa, M., Horiuchi, D., Fujioka, Y., & Okada, C. (2019). Seismic structure of rifting in the Okinawa Trough, an active backarc basin of the Ryukyu (Nansei-Shoto) island arc–trench system. Earth, Planets and Space, 71, 1-26.
Roozeboom, B. (1884). Rec. Trav. Chem. Pays-Bas, 3, 26.
Roozeboom, H. B. (1885). Sur la dissociation des hydrates de l'acide sulfureux, du chlore et du brome. Recueil des Travaux Chimiques des Pays‐Bas, 4(2), 65-73.
Shankar, U., & Sain, K. (2015). Seismic attributes for characterization of gas hydrate and free gas in the Mahanadi Basin. In 2015 Biennial International Conference & Exposition, Society of Petroleum Geophysicists.
Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., Mcmillen, K. J., LAOD, J. W., & Worzel, J. L. (1979). Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG bulletin, 63(12), 2204-2213.
Shyu, C. T. & Liu, C. S. (2001). Heat Flow of the Southwestern End of the Okinawa Trough. Terrestrial, Atmospheric and Oceanic Sciences, 12, 305-317. 10.3319/TAO.2001.12.S.305(ODP).
Shyu, C. T., & Chiang, H. I. (2005). Determination of Seafloor Temperatures Using Data form High-Resolution Marine Heat Probes. Terrestrial, Atmospheric and Oceanic Sciences, 16, 137-153.
Shyu, C. T., Chen, Y. J., Chiang, S. T., & Liu, C. S. (2006). Heat Flow Measurements over Bottom Simulating Reflectors, Offshore Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 845-869.
Sibuet, J. C., Hsu, S. K., Shyu, C. T., & Liu, C. S. (1995). Structural and kinematic evolutions of the Okinawa Trough backarc basin. Backarc Basins: Tectonics and Magmatism, 343-379.
Sibuet, J. C., Deffontaines, B., Hsu, S. K., Thareau, N., Le Formal, J. P., & Liu, C. S. (1998). Okinawa trough backarc basin: Early tectonic and magmatic evolution. Journal of Geophysical Research: Solid Earth, 103(B12), 30245-30267.
Sloan, E. D., Jr. (1991). Natural Gas Hydrates. Journal of Petroleum Technology, 43(12), 1414-1417. https://doi.org/10.2118/23562-pa
Sun, Q., & Kang, Y. T. (2016). Review on CO2 hydrate formation/dissociation and its cold energy application. Renewable and Sustainable Energy Reviews, 62, 478-494. https://doi.org/10.1016/j.rser.2016.04.062
Sychev, P. M., Soinov, V. V., & Veselov, O. V. (1991). Heat Flow as an Indicator of the Dynamics of Deep Processes Occurring in Marginal Seas and Island Arcs of the Northwestern Pacific. Terrestrial Heat Flow and the Lithosphere Structure, 264-282.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952.
Tsai, C.-H., Hsu, S.-K., Chen, S.-C., Wang, S.-Y., Lin, L.-K., Huang, P.-C., Chen, K.-T., Lin, H.-S., Liang, C.-W., & Cho, Y.-Y. (2021). Active tectonics and volcanism in the southernmost Okinawa Trough back-arc basin derived from deep-towed sonar surveys. Tectonophysics, 817, 229047. https://doi.org/https://doi.org/10.1016/j.tecto.2021.229047
Watanabe, T., Langseth, M. G., & Anderson, R. N. (1977). Heat flow in back‐arc basins of the western Pacific. Island Arcs, Deep Sea Trenches and Back‐Arc Basins, 1, 137-161.
Wright, J., Rothery, D. A., Brown, J. E., Oceanography Course Team Open University, & Open University. (1998). The ocean basins: their structure and evolution (Vol. 1). Butterworth-Heinemann.
Wu, J. N., Chiang, H. T., Liu, C. S., & Chiao, L. Y. (2015). Simulation of fluid migration in a mud volcano offshore SW Taiwan. In AGU Fall Meeting Abstracts (Vol. 2015, pp. OS23B-2018).
Yamano, M., Uyeda, S., Aoki, Y., & Shipley, T. H. (1982). Estimates of heat flow derived from gas hydrates. Geology, 10(7), 339-343.
Yilmaz, Ö. (2001). Seismic data analysis: Processing, inversion, and interpretation of seismic data. Society of exploration geophysicists.
Yu, H. S., Song, G. S. (1992). Physiographic Characteristic if the Continental Margin, Northeast Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 3, 3, 419-434
Zhang, L., Luan, X., Zeng, Z., & Liu, H. (2019). Key parameters of the structure and evolution of the Okinawa Trough: Modelling results constrained by heat flow observations. Geological Journal, 54(6), 3542-3555. https://doi.org/10.1002/gj.3356
網頁:
NOAA Ocean Exploration. (2017). What are gas hydrates? Retrieved June 19, 2023, from https://oceanexplorer.noaa.gov/facts/hydrates.html
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90667-
dc.description.abstract南沖繩海槽是位於臺灣東北方海域的弧後張裂盆地,過去認為南沖繩海槽在構造上有延續至宜蘭平原,從斷層構造走向以及熱流分布特徵顯示雖然宜蘭近岸的龜山島周遭有高熱流分布,但在南沖繩海槽與宜蘭近岸間的宜蘭海脊區域地熱流資料相對有限,且在此區域的構造特徵也與近岸的宜蘭平原及更外海的南沖繩海槽略有差異,故南沖繩海槽的熱構造上是否延續至宜蘭平原之議題,仍有進一步探討的空間。本研究利用多頻道反射震測剖面及利氏探針所量取的地熱流資料,震測剖面顯示宜蘭海脊的南、北嘴區域海床下的震測反射訊號普遍具有海底仿擬反射現象,出現的深度分別約在海床下250公尺和100公尺處,而且集中在地形高區,之後再以海底仿擬反射之分佈,推導南沖繩海槽西緣宜蘭海脊的南、北嘴區域的熱流特徵,熱流值推導結果顯示宜蘭海脊南嘴約為28-67 mW/m2,而宜蘭海脊北嘴約為73-159 mW/m2,宜蘭海脊北嘴熱流值較高的原因推測是受斷層構造作用影響,深部高溫的流體沿斷層移棲到海床淺部;反觀宜蘭海脊南嘴少有斷層構造,因此,流體移棲的作用較不發達,熱流值較低,再以利氏探針量測的熱流值比較海底仿擬反射推導的熱流值結果,兩者變化趨勢大致符合。比較兩種地熱流特徵的研究方法,雖然利氏探針可測得海床現地的熱流值,但當海床底的質較硬或沈積物砂質含量較高時,便不利於其地熱流量測工作之進行施做,因此利用海底仿擬反射來推導熱流,可補足利氏探針不易施做的問題,透過兩者調查方法的相互搭配及整合,不僅可相互驗證地熱流的量測結果,也可在調查區中獲得更大範圍的地熱流特徵分佈資訊。而從震測資料中的斷層構造與宜蘭海脊的地熱流分佈特徵分析結果,本研究認為在宜蘭海脊南、北嘴區域構造上受造山後垮塌影響,熱流資料上則顯示尚未出現如南沖繩海槽的火成活動熱流值,本研究推導宜蘭海脊的南、北嘴的熱流值顯示此區尚未有成熟弧後張裂的特徵,推測本研究區域可能仍處於弧後張裂早期大陸裂谷階段。zh_TW
dc.description.abstractThe South Okinawa Trough (SOT) is a back-arc spreading basin located in the northeastern sea area of Taiwan. In the past, it was believed that the structural continuation of the South Okinawa Trough extended to the Yilan Plain. However, based on the fault structure trends and heat flow distribution characteristics, high heat flow is observed around Turtle Island near Yilan, there is relatively limited heat flow data between the SOT and the coastal area of Yilan. Additionally, the structural features in this area slightly differ from those of the nearby Yilan Plain and the offshore SOT. Therefore, further investigation is required to determine whether the thermal structure of the SOT extends to the Yilan Plain.This study utilized multi-channel seismic profiles and heat flow data obtained from Lister type probes. The seismic profiles revealed that the seismic reflection signals beneath the seafloor in the North Yilan Ridge Spur (NYRS) and South Yilan Ridge Spur (SYRS) generally exhibit seafloor bottom simulating reflectors (BSRs). The depths of these BSRs are approximately 250 meters and 100 meters below the seafloor, respectively, and are concentrated in high relief areas. By examining the distribution of BSRs, the thermal characteristics of the NYRS and SYRS, which is located at the western edge of the SOT, were inferred. The derived heat flow values indicate that the SYRS is approximately 20-65 mW/m², while the NYRS is approximately 70-150 mW/m². The higher heat flow values in the NYRS are attributed to the influence of fault structures, where high-temperature fluids migrate along the faults and settle in the shallow layer. Conversely, the SYRS has fewer fault structures, resulting in less developed fluid migration and lower heat flow values. Comparing the heat flow values measured by Lister type probes with those derived from BSRs, the two methods generally exhibit similar trends. While Lister type probes can measure in situ heat flow values on the seafloor, the measurement becomes challenging when the seafloor substrate is harder or contains a higher proportion of sandy sediment. Therefore, using BSRs to derive heat flow can complement the limitations of Lister type probes. Through the combination and integration of these two investigation methods, not only can the measurement results of heat flow be mutually verified, but also a larger range of heat flow distribution information can be obtained in the study area. Based on the analysis of fault structures in the seismic data and the distribution characteristics of heat flow in the Yilan Ridge, this study suggests that the structural features in the SYRS and NYRS have been influenced by post-orogenic collapse. However, the heat flow data indicates that the volcanic activity-related heat flow values observed in the South Okinawa Trough have not yet appeared in the Yilan Ridge. The inferred heat flow values of the SYRS and NYRS in this study indicate that this area does not exhibit mature characteristics of back-arc spreading, suggesting that the research area may still be in the early stage of a continental rift in the back-arc spreading phase.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:05:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:05:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
第一章 緒論 1
1.1研究動機 1
1.2研究目的 6
第二章 研究方法及資料處理 8
2.1研究方法 8
2.2震測資料重處理 9
2.3水合物穩定曲線 15
2.4熱流值估算 18
第三章 研究結果 24
3.1震測資料分析及BSR辨識結果 24
3.2反射震測資料速度分析 38
3.3地熱探針資料結果 40
3.4 區域地熱分析 41
第四章 綜合討論 44
4.1不同假設氣體成分推導熱流比較 44
4.2宜蘭海脊北嘴高熱流特徵之可能成因 50
4.3 BSR推導熱流與利氏熱探針熱流比較 56
4.4宜蘭海脊南北嘴熱特徵與南沖繩海槽張裂前緣討論 60
第五章 結論 64
參考資料 65
附錄一 利氏探針簡介 70
附錄二、利氏熱探針資料收集過程 71
-
dc.language.isozh_TW-
dc.subject熱流zh_TW
dc.subject南沖繩海槽zh_TW
dc.subject宜蘭海脊南北嘴zh_TW
dc.subject海底仿擬反射zh_TW
dc.subjectHeat flowen
dc.subjectSouth Okinawa Troughen
dc.subjectNorth and South Yilan Ridge Spuren
dc.subjectBottom Simulating Reflectoren
dc.title海底仿擬反射估算熱流-以宜蘭海脊南北嘴為例zh_TW
dc.titleHeat Flow Derived from Bottom Simulating Reflectors – North and South Yilan Ridge Spurs as Examplesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor江協堂zh_TW
dc.contributor.coadvisorHsieh-Tang Chiangen
dc.contributor.oralexamcommittee陳松春;徐春田;陳麗雯zh_TW
dc.contributor.oralexamcommitteeSong-Chun Chen;Chuen-Tien Shyu;Li-Wen Chenen
dc.subject.keyword南沖繩海槽,宜蘭海脊南北嘴,海底仿擬反射,熱流,zh_TW
dc.subject.keywordSouth Okinawa Trough,North and South Yilan Ridge Spur,Bottom Simulating Reflector,Heat flow,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202301219-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-06-30-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2024-06-28-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf10.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved