請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90665
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭柏齡 | zh_TW |
dc.contributor.advisor | Po-Ling Kuo | en |
dc.contributor.author | 郭奕威 | zh_TW |
dc.contributor.author | Yi-Wei Kuo | en |
dc.date.accessioned | 2023-10-03T17:05:16Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-03-27 | - |
dc.identifier.citation | Lin, D., et al., Microgel Single-Cell Culture Arrays on a Microfluidic Chip for Selective Expansion and Recovery of Colorectal Cancer Stem Cells. Anal Chem, 2021. 93(37): p. 12628-12638.
Lawson, D.A., et al., Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 2015. 526(7571): p. 131-5. Dunn, J., R.G. Tompkins, and M.L. Yarmush, Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. The Journal of cell biology, 1992. 116(4): p. 1043-1053. Ezzell, R.M., et al., Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Experimental cell research, 1993. 208(2): p. 442-452. Bruno, G., et al., Microfluidic Multielectrode Arrays for Spatially Localized Drug Delivery and Electrical Recordings of Primary Neuronal Cultures. Front Bioeng Biotechnol, 2020. 8: p. 626. Dohle, E., et al., Co-culture Model for Cutaneous Wound Healing to Assess a Porous Fiber-Based Drug Delivery System. Tissue Eng Part C Methods, 2020. 26(9): p. 475-484. Schnabel, M., et al., Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage, 2002. 10(1): p. 62-70. Von Der Mark, K., et al., Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature, 1977. 267(5611): p. 531-532. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89. Gilbert, P.M., et al., Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 2010. 329(5995): p. 1078-1081. Cao, Y., et al., 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study. Materials & Design, 2021. 210. Hou, X., et al., The hydroxyapatite microtubes enhanced GelMA hydrogel scaffold with inner “pipeline framework” structure for bone tissue regeneration. Composites Part B: Engineering, 2022. 228. Xu, C.Y., et al., Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-86. Wang, H.M., et al., Novel biodegradable porous scaffold applied to skin regeneration. PLoS One, 2013. 8(6): p. e56330. Ahmad, T., et al., Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta Biomater, 2017. 64: p. 161-175. Maritan, S.M., E.Y. Lian, and L.M. Mulligan, An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production. J Vis Exp, 2017(121). Rodoplu, D., J.S. Matahum, and C.H. Hsu, A microfluidic hanging drop-based spheroid co-culture platform for probing tumor angiogenesis. Lab Chip, 2022. 22(7): p. 1275-1285. Zhao, L., et al., A 3D Printed Hanging Drop Dripper for Tumor Spheroids Analysis Without Recovery. Sci Rep, 2019. 9(1): p. 19717. Ferrari, M., F. Cirisano, and M.C. Moran, Super Liquid-repellent Surfaces and 3D Spheroids Growth. Front Biosci (Landmark Ed), 2022. 27(5): p. 144. Yakavets, I., et al., The alteration of temoporfin distribution in multicellular tumor spheroids by beta-cyclodextrins. Int J Pharm, 2017. 529(1-2): p. 568-575. Dadgar, N., et al., A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies. Microsyst Nanoeng, 2020. 6: p. 93. Lee, J.M., et al., Generation of tumor spheroids using a droplet-based microfluidic device for photothermal therapy. Microsyst Nanoeng, 2020. 6: p. 52. Lewis, N.S., et al., Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence. J Tissue Eng, 2017. 8: p. 2041731417704428. Turker, E., N. Demircak, and A. Arslan-Yildiz, Scaffold-free three-dimensional cell culturing using magnetic levitation. Biomater Sci, 2018. 6(7): p. 1745-1753. Costa, E.C., et al., Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models. Biotechnol Bioeng, 2014. 111(8): p. 1672-85. Costa, E.C., et al., Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches. Biotechnol J, 2018. 13(1). Fukuda, J., et al., Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials, 2006. 27(30): p. 5259-67. Lee, J.M., et al., Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Scientific Reports, 2018. 8(1). Kellner, K., et al., Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol Bioeng, 2002. 80(1): p. 73-83. Malda, J., T.J. Klein, and Z. Upton, The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng, 2007. 13(9): p. 2153-62. Hayashi, K. and Y. Tabata, Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater, 2011. 7(7): p. 2797-803. Kim, Y., et al., Incorporation of gelatin microparticles on the formation of adipose-derived stem cell spheroids. Int J Biol Macromol, 2018. 110: p. 472-478. Chen, C.S., et al., Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds. ACS Appl Mater Interfaces, 2018. 10(40): p. 33879-33890. Hwangbo, H., et al., Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater, 2022. 8: p. 57-70. Zhong, H., et al., Near-field electrospun PCL fibers/GelMA hydrogel composite dressing with controlled deferoxamine-release ability and retiform surface for diabetic wound healing. Nano Research, 2022. Luo, Z., et al., Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Adv Healthc Mater, 2019. 8(3): p. e1801054. Bordini, E.A.F., et al., Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments. ACS Appl Bio Mater, 2021. 4(9): p. 6993-7006. Hoffman, A.S., Hydrogels for biomedical applications. Ann N Y Acad Sci, 2001. 944: p. 62-73. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-71. Mealy, J.E., et al., Injectable Granular Hydrogels with Multifunctional Properties for Biomedical Applications. Adv Mater, 2018. 30(20): p. e1705912. Nih, L.R., et al., Injection of Microporous Annealing Particle (MAP) Hydrogels in the Stroke Cavity Reduces Gliosis and Inflammation and Promotes NPC Migration to the Lesion. Adv Mater, 2017. 29(32). Tsurkan, M.V., et al., Growth factor delivery from hydrogel particle aggregates to promote tubular regeneration after acute kidney injury. J Control Release, 2013. 167(3): p. 248-55. Patel, Z.S., et al., Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater, 2008. 4(5): p. 1126-38. Wan, J., Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery. Polymers, 2012. 4(2): p. 1084-1108. Koh, J., et al., Enhanced In Vivo Delivery of Stem Cells using Microporous Annealed Particle Scaffolds. Small, 2019. 15(39): p. e1903147. Wilson, K.L., et al., Stoichiometric Post-Modification of Hydrogel Microparticles Dictates Neural Stem Cell Fate in Microporous Annealed Particle Scaffolds. Adv Mater, 2022. 34(33): p. e2201921. Franco, C.L., J. Price, and J.L. West, Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater, 2011. 7(9): p. 3267-76. Kang, M.G., et al., Nanogels Derived from Fish Gelatin: Application to Drug Delivery System. Mar Drugs, 2019. 17(4). Kim, H.U., et al., Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microparticles with high-resolution and high uniformity. Lab Chip, 2020. 20(1): p. 74-83. Panda, P., et al., Stop-flow lithography to generate cell-laden microgel particles. Lab Chip, 2008. 8(7): p. 1056-61. Parker, B., et al., Rapid fabrication of circular channel microfluidic flow‐focusing devices for hydrogel droplet generation. Micro & Nano Letters, 2016. 11(1): p. 41-45. Rettke, D., et al., Microfluidics-assisted synthesis and functionalization of monodisperse colloidal hydrogel particles for optomechanical biosensors. J Mater Chem B, 2022. 10(10): p. 1663-1674. Mehraji, S. and M. Saadatmand, Flow regime mapping for a two-phase system of aqueous alginate and water droplets in T-junction geometry. Physics of Fluids, 2021. 33(7). Tan, W.H. and S. Takeuchi, Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation. Advanced Materials, 2007. 19(18): p. 2696-2701. Dang, T.-D., et al., Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device. Journal of Industrial and Engineering Chemistry, 2012. 18(4): p. 1308-1313. Chen, C., et al., Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Applied Materials Today, 2021. 23. Xu, Y., et al., Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly (ε-caprolactone) scaffold for cartilage tissue engineering. Journal of orthopaedic translation, 2019. 18: p. 128-141. Xue, Y., et al., Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS Appl Bio Mater, 2020. 3(10): p. 6908-6918. Yang, J., et al., Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chemical Engineering Journal, 2020. 400. Yang, L., et al., Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration. Nano Research, 2022. Zhang, S. and K. Kawakami, One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int J Pharm, 2010. 397(1-2): p. 211-7. Saallah, S. and I.W. Lenggoro, Nanoparticles Carrying Biological Molecules: Recent Advances and Applications. KONA Powder and Particle Journal, 2018. 35(0): p. 89-111. Bai, M.Y. and Y.M. Hu, Development of alpha-lipoic acid encapsulated chitosan monodispersed particles using an electrospray system: synthesis, characterisations and anti-inflammatory evaluations. J Microencapsul, 2014. 31(4): p. 373-81. Radaei, P., S. Mashayekhan, and S. Vakilian, Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology. Mater Sci Eng C Mater Biol Appl, 2017. 75: p. 545-553. Xie, M., et al., Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets. Small, 2019. 15(4): p. e1804216. Lee, B.H., et al., Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels. RSC Advances, 2015. 5(128): p. 106094-106097. Coulaud, J., et al., A new spectroscopic method for measuring ferric diffusion coefficient in gelatin-based dosimeter gels. Biomedical Physics & Engineering Express, 2019. 5(6). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90665 | - |
dc.description.abstract | 人體是由許多精細且複雜的生物系統所組成的,而細胞為生物體組織結構以及功能的基本單位。以細胞培養進行的體外實驗提供了解人體運作的重要資訊。傳統的二維細胞培養有著缺乏細胞間和細胞與胞外基質間的交互作用、細胞受到不平均的拉力使其不自然生長等劣勢,使得二維細胞培養無法真實的模擬生物體內的運作,也因此,能更真實模擬體內生長環境的三維細胞培養技術在近年來越來越受到重視,也已經被廣泛的應用於再生醫學、癌症腫瘤研究、藥物研究等生醫工程領域。細胞球是常見的三維細胞培養技術之一,細胞在懸浮狀態下會聚集成球狀,以此可模擬胚胎生成(embryogenesis)、器官生成(organogenesis)等細胞自我聚集(Self assembly)的自然現象,但細胞球由於中心的養分以及氧氣不足而造成中心細胞會因此而死亡。因此,本研究將GelMA水凝膠顆粒與NIH-3T3纖維母細胞混合後,期望細胞藉由熱運動聚集更多顆粒並再聚集成細胞球,以此讓細胞球中有均勻的水凝膠顆粒,便可增加細胞中心的存活率。在製作顆粒方面,本研究使用電噴霧(Electrospray)技術製造GelMA水凝膠顆粒,有別於其餘方式,電噴霧具有簡單、高彈性、可控性高等特性。本研究詳細的記錄包含參數測試、去除光起始劑、乾燥方式等製造顆粒的過程,並對各步驟進行討論,以此尋找以及探討最穩定的製造方式。綜上所述,本研究目的主要分為兩個部分,第一部分是尋找並確定製程和參數以穩定製造GelMA水凝膠顆粒,第二部分是將GelMA顆粒應用於細胞球培養上,最後雖然實驗結果無法符合我們的預期,但我們根據結果討論分析失敗的可能原因,並提供可行的改進方式,期望之後能克服困難,達成實驗目的。 | zh_TW |
dc.description.abstract | The human body is composed of many delicate and complex biological systems, and cells are the basic units of the tissue structure and function of the organism. In vitro studies using cell culture provide valuable information to understand the operation of the human body. Traditional two-dimensional cell culture technique has disadvantages such as lack of interaction between cells to cells and cells to extracellular matrix, and cell may grow unnaturally because of suffering unequal tension, which may be challenges for two-dimensional cell culture technique to truly simulate the operation of organisms. Therefore, the three-dimensional cell culture technology that can more realistically simulate the growth environment in vivo has received more and more attention in recent years, and has been widely used in biomedical engineering fields such as regenerative medicine, cancer tumor research, and drug research. Spheroid culturing are one of the common three-dimensional cell culture techniques. Cells will aggregate into spheres in a suspended state, which can simulate the natural phenomenon of cell self-assembly such as embryogenesis and organogenesis. Due to the lack of nutrients and oxygen in the center of the cell spheroid, the center cells don’t have high viability. Therefore, in our research, we propose a scenario to solve this problem. We mix GelMA hydrogel particles and NIH-3T3 fibroblasts cells, and expect multiple particles will adhere on cells and then aggregate into cell spheres, so as to make the cell spheres have uniform hydrogel particles inside, and we believed that can increase the viability of the cells in the cluster center. In terms of making particles, this study utilized electrospray technology to manufacture GelMA hydrogel particles. Different from other methods, electrospray has the characteristics of simplicity, high elasticity, and high controllability. The detailed records of this research include the process of manufacturing particles such as parameter testing, removal of photoinitiator, drying methods, etc., and discuss each step, so as to find and explore the most stable manufacturing method. In summary, the purpose of this research is divided into two parts. The first part is to find and determine the process and parameters to stably manufacture GelMA hydrogel particles. The second part is to apply GelMA particles to spheroid culturing. Finally, although the results cannot meet our scenario, but we discuss the possible reasons for the problems based on the results, and provide feasible improvement methods, hoping to overcome challenges and achieve the experimental purpose. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:05:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:05:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 細胞培養技術重要性及應用 1 1.2 GelMA 水凝膠材料 3 1.3 水凝膠顆粒(Hydrogel particles)的製造方法 4 1.4 電噴霧技術用於製造水凝膠顆粒 8 1.5 研究動機及目的 10 Chapter 2 Materials and Methods 14 2.1 GelMA 製備 14 2.2電噴霧樣品溶液配置 15 2.3電噴霧參數測試、調整以及確定 15 2.4 電噴霧實驗過程及架構 16 2.5 照光聚合 17 2.6 去除多餘的光起始劑 18 2.7 乾燥方式 18 2.7.1 冷凍真空乾燥法 18 2.7.2 臨界點乾燥法 19 2.8 流變學分析 20 2.9 細胞毒性測試 20 2.10 細胞型態及細胞球培養 21 2.11 細胞存活率分析 21 2.12 SEM analysis 22 2.13 NMR analysis 22 2.14 統計分析 23 Chapter 3 Results 24 3.1 電噴霧參數對顆粒大小的影響 24 3.1.1 樣品濃度對顆粒大小的影響 24 3.1.2 針頭與接地端的距離對顆粒大小的影響 26 3.1.3 施加電壓對顆粒大小的影響 29 3.1.4 樣品溶液流速對顆粒大小的影響 30 3.1.5 相同參數、不同批次製造結果比較 32 3.2 清洗步驟能有效的去除LAP 33 3.3 乾燥方式比較 34 3.3.1冷凍真空乾燥使成品失去原始型態 34 3.3.2 臨界點乾燥法能維持原始型態 36 3.4 流變學量測 37 3.5 細胞毒性測試 39 3.6 細胞球培養 40 3.6.1 細胞存活率分析 40 3.6.2 NIH-3T3纖維母細胞貼附在細胞球上以及細胞球3D影像 42 3.6.3細胞並沒有聚集的現象 46 Chapter 4 Discussions 48 4.1 顆粒失去原始型態原因及討論 48 4.1.1 冷凍真空乾燥法會破壞顆粒原始型態 48 4.1.2 離心步驟對顆粒形態造成破壞 48 4.1.3 維持顆粒形態的改進方法討論 49 4.2 細胞無法主動貼附細胞球原因及討論 50 4.2.1 顆粒互相沾黏以致尺度變大使得實驗目的無法達成 50 4.2.2 沉降的細胞與懸浮狀態的顆粒難以互相產生作用 51 4.2.3顆粒大小對細胞貼附的討論分析 51 4.2.4 細胞球培養改進方法 52 4.3 LAP擴散至水中的時間估算 52 Chapter 5 Conclusions 53 Chapter 6 Future works 54 Chapter 7 References 55 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用電噴霧製備GelMA顆粒以及在三維細胞培養之應用 | zh_TW |
dc.title | Fabrication and Application of electro-sprayed GelMA particles for 3D cell culturing | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林耿慧;趙本秀;游佳欣 | zh_TW |
dc.contributor.oralexamcommittee | Keng-Hui Lin;Pen-Hsiu Chao;Jia-shing Yu | en |
dc.subject.keyword | 三維細胞培養,細胞球培養,電噴霧技術,GelMA顆粒,臨界點乾燥, | zh_TW |
dc.subject.keyword | 3D cell culturing,Spheroid culturing,Electrospray technique,GelMA hydrogel particles,Critical Point Dry, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU202300697 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-03-28 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
dc.date.embargo-lift | 2028-03-27 | - |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-03-27 | 4.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。