請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90654
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林逸彬 | zh_TW |
dc.contributor.advisor | Yi-Pin Lin | en |
dc.contributor.author | 余佳洪 | zh_TW |
dc.contributor.author | Jia- Hong Yu | en |
dc.date.accessioned | 2023-10-03T17:02:28Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-05 | - |
dc.identifier.citation | Chang, F. C., & Lin, Y. P. (2019). Survey of Lead Concentration in Tap Water on a University Campus. Environmental Science and Pollution Research, 26(24), 25275-25285. doi:10.1007/s11356-019-05771-1
Cuenya, B. R. (2010). Synthesis and Catalytic Properties of Metal Nanoparticles: Size, Shape, Support, Composition, and Oxidation State Effects. Thin Solid Films, 518(12), 3127-3150. Dan, Y., Zhang, W., Xue, R., Ma, X., Stephan, C., & Shi, H. (2015). Characterization of Gold Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed by Single-Particle Inductively Coupled Plasma-Mass Spectrometry Analysis. Environmental Science & Technology, 49(5), 3007-3014. doi:10.1021/es506179e Degueldre, C., & Favarger, P. Y. (2003). Colloid Analysis by Single Particle Inductively Coupled Plasma-Mass Spectroscopy: A Feasibility Study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1-3), 137-142. doi:10.1016/s0927-7757(02)00568-x Elzey, S., Tsai, D. H., Yu, L. L., Winchester, M. R., Kelley, M. E., & Hackley, V. A. (2013). Real-Time Size Discrimination and Elemental Analysis of Gold Nanoparticles Using Es-Dma Coupled to Icp-Ms. Analytical and Bioanalytical Chemistry, 405(7), 2279-2288. doi:10.1007/s00216-012-6617-z Fabricius, A. L., Duester, L., Meermann, B., & Ternes, T. A. (2014). Icp-Ms-Based Characterization of Inorganic Nanoparticles--Sample Preparation and Off-Line Fractionation Strategies. Analytical and Bioanalytical Chemistry, 406(2), 467-479. doi:10.1007/s00216-013-7480-2 Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative Toxicity of Nanoparticulate Zno, Bulk Zno, and Zncl2 to a Freshwater Microalga (Pseudokirchneriella Subcapitata): The Importance of Particle Solubility. Environmental Science & Technology, 41(24), 8484-8490. Hadioui, M., Merdzan, V., & Wilkinson, K. J. (2015). Detection and Characterization of Zno Nanoparticles in Surface and Waste Waters Using Single Particle Icpms. Environmental Science & Technology, 49(10), 6141-6148. doi:10.1021/acs.est.5b00681 Hadioui, M., Peyrot, C., & Wilkinson, K. J. (2014). Improvements to Single Particle Icpms by the Online Coupling of Ion Exchange Resins. Analytical Chemistry, 86(10), 4668-4674. doi:10.1021/ac5004932 Handy, R. D., Von der Kammer, F., Lead, J. R., Hassellöv, M., Owen, R., & Crane, M. (2008). The Ecotoxicology and Chemistry of Manufactured Nanoparticles. Ecotoxicology, 17(4), 287-314. doi:10.1007/s10646-008-0199-8 Hassan, P. A., Rana, S., & Verma, G. (2015). Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering. Langmuir, 31(1), 3-12. doi:10.1021/la501789z Hess, A., Tarik, M., & Ludwig, C. (2015). A Hyphenated Smps–Icpms Coupling Setup: Size-Resolved Element Specific Analysis of Airborne Nanoparticles. Journal of Aerosol Science, 88, 109-118. doi:10.1016/j.jaerosci.2015.05.016 Howell, K. A., Achterberg, E. P., Tappin, A. D., & Worsfold, P. J. (2006). Colloidal Metals in the Tamar Estuary and Their Influence on Metal Fractionation by Membrane Filtration. Environmental Chemistry, 3(3), 199-207. Hsieh, Y.-C., Lin, Y.-P., Hsiao, T.-C., & Hou, W.-C. (2022). A Two-Dimensional Nanoparticle Characterization Method Combining Differential Mobility Analyzer and Single-Particle Inductively Coupled Plasma-Mass Spectrometry with an Atomizer-Enabled Sample Introduction (Atm-Dma-Spicp-Ms): Toward the Analysis of Heteroaggregated Nanoparticles in Wastewater. Science of The Total Environment, 838, 156444. Iskandar, F., Gradon, L., & Okuyama, K. (2003). Control of the Morphology of Nanostructured Particles Prepared by the Spray Drying of a Nanoparticle Sol. Journal of Colloid and Interface Science, 265(2), 296-303. doi:10.1016/s0021-9797(03)00519-8 Joudeh, N., & Linke, D. (2022). Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J Nanobiotechnology, 20(1), 262. doi:10.1186/s12951-022-01477-8 Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, Applications and Toxicities. Arabian journal of chemistry, 12(7), 908-931. Kittler, S., Greulich, C., Diendorf, J., Köller, M., & Epple, M. (2010). Toxicity of Silver Nanoparticles Increases During Storage Because of Slow Dissolution under Release of Silver Ions. Chemistry of materials, 22(16), 4548-4554. doi:10.1021/cm100023p Kálomista, I., Kéri, A., & Galbács, G. (2016). On the Applicability and Performance of the Single Particle Icp-Ms Nano-Dispersion Characterization Method in Cases Complicated by Spectral Interferences. Journal of Analytical Atomic Spectrometry, 31(5), 1112-1122. doi:10.1039/c5ja00501a Korshin, G., & Liu, H. (2019). Preventing the Colloidal Dispersion of Pb (Iv) Corrosion Scales and Lead Release in Drinking Water Distribution Systems. Environmental Science: Water Research & Technology, 5(7), 1262-1269. Laborda, F., Bolea, E., & Jiménez-Lamana, J. (2016). Single Particle Inductively Coupled Plasma Mass Spectrometry for the Analysis of Inorganic Engineered Nanoparticles in Environmental Samples. Trends in Environmental Analytical Chemistry, 9, 15-23. doi:10.1016/j.teac.2016.02.001 Laborda, F., Bolea, E., & Jimenez-Lamana, J. (2014). Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Analytical Chemistry, 86(5), 2270-2278. doi:10.1021/ac402980q Laborda, F., Bolea, E., & Jimenez-Lamana, J. (2014). Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. In: ACS Publications. Laborda, F., Jiménez-Lamana, J., Bolea, E., & Castillo, J. R. (2013). Critical Considerations for the Determination of Nanoparticle Number Concentrations, Size and Number Size Distributions by Single Particle Icp-Ms. Journal of Analytical Atomic Spectrometry, 28(8), 1220-1232. doi:10.1039/C3JA50100K Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D., & Dai, H. (2001). Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes. The Journal of Physical Chemistry B, 105(46), 11424-11431. doi:10.1021/jp012085b Liu, J., Sonshine, D. A., Shervani, S., & Hurt, R. H. (2010). Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS nano, 4(11), 6903-6913. Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of Nanomaterials in the Environment. Environmental Science & Technology, 46(13), 6893-6899. doi:10.1021/es300839e Meermann, B., & Nischwitz, V. (2018). Icp-Ms for the Analysis at the Nanoscale – a Tutorial Review. Journal of Analytical Atomic Spectrometry, 33(9), 1432-1468. doi:10.1039/c8ja00037a Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N., & Valsami-Jones, E. (2012). The Complexity of Nanoparticle Dissolution and Its Importance in Nanotoxicological Studies. Science of The Total Environment, 438, 225-232. doi:10.1016/j.scitotenv.2012.08.066 Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019). Nanoparticle Characterization: What to Measure? Advanced Materials, 31(32), 1901556. Montaño, M. D., von der Kammer, F., Cuss, C. W., & Ranville, J. F. (2019). Opportunities for Examining the Natural Nanogeochemical Environment Using Recent Advances in Nanoparticle Analysis. Journal of Analytical Atomic Spectrometry, 34(9), 1768-1772. doi:10.1039/C9JA00168A Mu, L., & Sprando, R. L. (2010). Application of Nanotechnology in Cosmetics. Pharmaceutical research, 27(8), 1746-1749. doi:10.1007/s11095-010-0139-1 Ng, D. Q., Chen, C. Y., & Lin, Y. P. (2018). A New Scenario of Lead Contamination in Potable Water Distribution Systems: Galvanic Corrosion between Lead and Stainless Steel. Science of The Total Environment, 637-638, 1423-1431. doi:10.1016/j.scitotenv.2018.05.114 Ng, D. Q., Strathmann, T. J., & Lin, Y. P. (2012). Role of Orthophosphate as a Corrosion Inhibitor in Chloraminated Solutions Containing Tetravalent Lead Corrosion Product Pbo2. Environmental Science & Technology, 46(20), 11062-11069. doi:10.1021/es302220t Pace, H. E., Rogers, N. J., Jarolimek, C., Coleman, V. A., Higgins, C. P., & Ranville, J. F. (2011). Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles Via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 83(24), 9361-9369. doi:10.1021/ac201952t Peng, Y. C., Lu, Y. F., & Lin, Y. P. (2022). Release of Particulate Lead from Four Lead Corrosion Products in Drinking Water: A Laboratory Study Coupled with Microscopic Observations and Computational Fluid Dynamics. Environmental Science & Technology, 56(17), 12218-12227. doi:10.1021/acs.est.2c02461 Petermann, N., Stein, N., Schierning, G., Theissmann, R., Stoib, B., Brandt, M. S., . . . Wiggers, H. (2011). Plasma Synthesis of Nanostructures for Improved Thermoelectric Properties. Journal of Physics D: Applied Physics, 44(17), 174034. doi:10.1088/0022-3727/44/17/174034 Rades, S., Hodoroaba, V.-D., Salge, T., Wirth, T., Lobera, M. P., Labrador, R. H., . . . Unger, W. E. (2014). High-Resolution Imaging with Sem/T-Sem, Edx and Sam as a Combined Methodical Approach for Morphological and Elemental Analyses of Single Engineered Nanoparticles. RSC advances, 4(91), 49577-49587. doi:10.1039/C4RA05092D Raj, S., Jose, S., Sumod, U., & Sabitha, M. (2012). Nanotechnology in Cosmetics: Opportunities and Challenges. Journal of pharmacy & bioallied sciences, 4(3), 186. doi:10.4103/0975-7406.99016 Sarin, P., Snoeyink, V., Bebee, J., Jim, K., Beckett, M., Kriven, W., & Clement, J. (2004). Iron Release from Corroded Iron Pipes in Drinking Water Distribution Systems: Effect of Dissolved Oxygen. Water research, 38(5), 1259-1269. Sebastian, V., Arruebo, M., & Santamaria, J. (2014). Reaction Engineering Strategies for the Production of Inorganic Nanomaterials. Small, 10(5), 835-853. Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., & Unrine, J. M. (2011). Effect of Silver Nanoparticle Surface Coating on Bioaccumulation and Reproductive Toxicity in Earthworms (Eisenia Fetida). Nanotoxicology, 5(3), 432-444. doi:10.3109/17435390.2010.537382 Simon, U., & Schön, G. (2000). Electrical Properties of Chemically Tailored Nanoparticles and Their Application in Microelectronics. In Handbook of Nanostructured Materials and Nanotechnology (pp. 131-178): Elsevier. Tan, J., Liu, J., Li, M., El Hadri, H., Hackley, V. A., & Zachariah, M. R. (2016). Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Analytical Chemistry, 88(17), 8548-8555. doi:10.1021/acs.analchem.6b01544 Tan, J., Yang, Y., El Hadri, H., Li, M., Hackley, V. A., & Zachariah, M. R. (2019). Fast Quantification of Nanorod Geometry by Dma-Spicp-Ms. Analyst, 144(7), 2275-2283. doi:10.1039/c8an02250j Tiede, K., Boxall, A. B., Tiede, D., Tear, S. P., David, H., & Lewis, J. (2009). A Robust Size-Characterisation Methodology for Studying Nanoparticle Behaviour in ‘Real’environmental Samples, Using Hydrodynamic Chromatography Coupled to Icp-Ms. Journal of Analytical Atomic Spectrometry, 24(7), 964-972. doi:10.1039/B822409A Triantafyllidou, S., Parks, J., & Edwards, M. (2007). Lead Particles in Potable Water. Journal‐American Water Works Association, 99(6), 107-117. Trueman, B. F., & Gagnon, G. A. (2016). Understanding the Role of Particulate Iron in Lead Release to Drinking Water. Environmental Science & Technology, 50(17), 9053-9060. Trueman, B. F., Gregory, B. S., McCormick, N. E., Gao, Y., Gora, S., Anaviapik-Soucie, T., . . . Gagnon, G. A. (2019). Manganese Increases Lead Release to Drinking Water. Environmental Science & Technology, 53(9), 4803-4812. Tsai, D., Zangmeister, R., Pease Iii, L., Tarlov, M., & Zachariah, M. (2008). Gas-Phase Ion-Mobility Characterization of Sam-Functionalized Au Nanoparticles. Langmuir, 24(16), 8483-8490. Tsai, D. H., DelRio, F. W., Pettibone, J. M., Lin, P. A., Tan, J., Zachariah, M. R., & Hackley, V. A. (2013). Temperature-Programmed Electrospray-Differential Mobility Analysis for Characterization of Ligated Nanoparticles in Complex Media. Langmuir, 29(36), 11267-11274. doi:10.1021/la402311c Wang, J.-w. (2021). Development of Hyphenated Differential Mobility Analyzer-Spicp-Ms Method for Size-Resolved Analysis of Metallic Nanoparticles in Water. doi:10.6342/NTU202102361 Wang, L., Wu, W.-M., Bolan, N. S., Tsang, D. C., Li, Y., Qin, M., & Hou, D. (2021). Environmental Fate, Toxicity and Risk Management Strategies of Nanoplastics in the Environment: Current Status and Future Perspectives. Journal of hazardous materials, 401, 123415. doi:10.1016/j.jhazmat.2020.123415 Yang, F., Shi, B., Gu, J., Wang, D., & Yang, M. (2012). Morphological and Physicochemical Characteristics of Iron Corrosion Scales Formed under Different Water Source Histories in a Drinking Water Distribution System. Water research, 46(16), 5423-5433. Zahin, N., Anwar, R., Tewari, D., Kabir, M., Sajid, A., Mathew, B., . . . Abdel-Daim, M. M. (2020). Nanoparticles and Its Biomedical Applications in Health and Diseases: Special Focus on Drug Delivery. Environmental Science and Pollution Research, 27(16), 19151-19168. doi:10.1007/s11356-019-05211-0 Zhang, Y., & Lin, Y.-P. (2011). Determination of Pbo2 Formation Kinetics from the Chlorination of Pb (Ii) Carbonate Solids Via Direct Pbo2 Measurement. Environmental Science & Technology, 45(6), 2338-2344. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90654 | - |
dc.description.abstract | 金屬奈米微粒是近年工業製造常用材料,若其流入環境中,可能對生物健康造成危害。金屬奈米微粒的特性與粒徑大小、濃度與化學組成有關。雖然單顆粒感應耦合電漿質譜儀(single particle inductively coupled plasma mass spectrometry, spICP-MS)已被應用在分析金屬奈米微粒,但須假設該奈米微粒為純金屬且為球形,因此,針對環境樣品所得的粒徑分析結果,通常存在偏差。
本研究串聯霧化器(atomizer, ATM)、微分電移動度分析儀(differential mobility analyzer, DMA)和spICP-MS (ATM-DMA-spICP-MS),並於ATM後結合一高溫爐乾燥避免顆粒聚合作為分析水樣中金屬奈米微粒之方法,因此方法先對金屬奈米微粒選徑後再分析金屬元素,可避免spICP-MS獨立分析時的誤差。但因使用高溫爐,若水樣中存在該金屬離子,則可能在乾燥過程中結晶形成新的奈米微粒,造成分析誤差。為評估離子濃度影響,本研究使用金標準奈米微粒添加金離子進行測試,並嘗試以離心前處處理分離離子和水中原始顆粒再進行分析,以去除離子造成的干擾,並應用該方法分析自來水中鐵和鉛奈米微粒的粒徑和濃度。 於金標準顆粒的分析測試中,添加金離子濃度使訊號半高寬(Full width at half maximum, FWHM)變大,由9.89增大至12.33,並測得較標準微粒粒徑小的金奈米微粒峰值,粒徑範圍約25-35 nm,經離心降低離子濃度後,該峰值明顯下降,顯示高的離子濃度確實會干擾測量結果但可藉由離心前處理去除該干擾。針對自來水樣品的分析,結果顯示該水樣內含有主要粒徑(mode size)為110 nm、濃度為2.74 x 107#/mL的鐵奈米微粒,和有主要粒徑為100 nm、濃度為7.48 x 106 #/mL的鉛奈米微粒,推測這些鐵與鉛奈米微粒可能由氧化鐵、碳酸鉛等管線腐蝕產物構成。 總體而言,ATM-DMA-spICP-MS的串連系統可同時獲得粒徑大小、濃度、和元素等分析資訊,使用離心可減少溶液離子對於分析的干擾。對於日後分析環境水樣中的金屬奈米微粒,此研究提供另一分析方法與參考標準。 | zh_TW |
dc.description.abstract | Metallic nanoparticles (NPs) are widely used in industrial applications in recent years but their release into the environment raises concerns about potential health risks. The characteristics of metallic NPs, such as size, particle number concentration, and chemical composition, play a crucial role in understanding their behavior and potential impacts. Although single particle inductively coupled plasma mass spectrometry (spICP-MS) has been applied for the analysis of metallic NPs, it assumes that the metallic NPs are all pure metals and spherical in shape, which are not true for most environmental samples and may introduce inherent errors in size analysis.
In this study, a method combining an atomizer (ATM), differential mobility analyzer (DMA), and spICP-MS (ATM-DMA-spICP-MS) was utilized for the analysis of metallic NPs in water samples. This method measures NPs size using DMA before elemental analysis using spICP-MS and a high-temperature furnace was employed for drying samples to prevent particle aggregation. However, if metal ions are present in the water samples, they can crystallize and form new NPs in the drying process leading to analytical errors. To evaluate the impact of ion concentration on the determination of size and particle number concentration of NPs, experiments were first conducted by introducing gold ions water samples containing to gold NPs and centrifugation was explored as a pretreatment to separate gold ions from the gold NPs to eliminate the potential interferences. The results showed that the addition of gold ions increased the full width at half maximum (FWHM) of the signals (from 9.89 to 12.33) and a new peak of smaller-sized gold NPs (25-35 nm) appeared, indicating the interferences caused by gold ions. After centrifugation, the interferences can be significantly eliminated, showing that effectiveness of this pretreatment. The method was then applied to analyze the size and particle number concentration of iron and lead NPs in tap water. For the tap water sample collected on the National Taiwan University campus, the results revealed the presence of iron NPs with a mode size of 110 nm and a concentration of 2.74 x 107 #/mL, and lead NPs with a mode size of 100 nm and a concentration of 7.48 x 106 #/mL. These iron and lead NPs were likely iron oxides and lead carbonate derived from corrosion of plumbing materials containing iron and lead in the pipelines. In summary, the hyphenated ATM-DMA-spICP-MS system allows simultaneous analysis of particle size, particle number concentration, and elemental composition. The use of centrifugation reduces interference caused by ions in the analysis. This study provides an alternative method for the analysis of metallic NPs in environmental samples. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:02:28Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:02:28Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 Ⅰ
摘要 Ⅱ Abstract Ⅳ Chapter 1. Introduction 1 Chapter 2. Literature review 2 2-1. Traditional nanoparticle characterization technologies 2 2-2. Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS) 3 2-3. Pretreatment process for environment sample 7 2-4. Hyphenated DMA-spICP-MS system 10 2-5. Objective 17 Chapter 3. Material and Method 18 3-1. Research framework 18 3-2. Configuration and operation of the hyphenated system 20 3-3. Materials and Chemicals 23 3-4. System total transport efficiency and particle number concentration calculation 23 3-5. Dissolved ions test and Sample pretreatment evaluation 25 Chapter 4. Result and discussion 27 4-1. Transport efficiency (𝜂ℎ) of the hyphenated system 27 4-2. Influence of dissolved Au ions on the quantification of AuNPs 31 4-3. Evaluations of different pretreatments for eliminating the interference caused by dissolved ions 34 4-4. Measurements of iron and lead nanoparticles in tap water 36 Chapter 5. Conclusions and Recommendations 44 References 46 | - |
dc.language.iso | en | - |
dc.title | 串聯微分電移動度粒徑分析系統與單顆粒感應耦合電漿質譜儀分析溶解離子對自來水中鐵和鉛奈米微粒的影響 | zh_TW |
dc.title | Influence of dissolved ions on Iron and Lead nanoparticles in tap water analysis by Hyphenated ATM-DMA-spICP-MS system. | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蕭大智;侯文哲 | zh_TW |
dc.contributor.oralexamcommittee | Ta-Chih Hsiao;Wen-Che Hou | en |
dc.subject.keyword | 金屬奈米微粒,微分電移動度粒徑分析儀,單顆粒感應耦合電漿質譜儀,金屬離子,離心, | zh_TW |
dc.subject.keyword | metallic nanoparticle,differential mobility analyzer,single particle inductively coupled plasma mass spectrometry,dissolved metal ions,centrifugation, | en |
dc.relation.page | 51 | - |
dc.identifier.doi | 10.6342/NTU202303079 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 2.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。