Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90653
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊啓伸zh_TW
dc.contributor.advisorChii-Shen Yangen
dc.contributor.author曹用謙zh_TW
dc.contributor.authorYong-Chian Tsaoen
dc.date.accessioned2023-10-03T17:02:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citationWang, R. and R. Moos, Electrical conductivity determination of semiconductors by utilizing photography, finite element simulation and resistance measurement. Journal of Materials Science, 2021. 56(17): p. 10449-10457.
Ender, M., A. Weber, and E. Ivers-Tiffée, A novel method for measuring the effective conductivity and the contact resistance of porous electrodes for lithium-ion batteries. Electrochemistry Communications, 2013. 34: p. 130-133.
Levlin, E., Conductivity measurements for controlling municipal wastewater treatment. 2007. 15.
Petitclerc, T., Do dialysate conductivity measurements provide conductivity clearance or ionic dialysance? Kidney International, 2006. 70(10): p. 1682-1686.
Yap, D.Y.H., E.K.Y. Ma, W.Y. Oon, W.H. Lee, W.H. Li, C.M. Ho, B. Gautama, R.W. Chan, and E.C. Wong., Bio-conductivity characteristics of chronic kidney disease stages examined by portable frequency-difference electrical impedance tomography. in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2022.
Della Pia, E.A., M. Elliott, D.D. Jones, and J.E. Macdonald, Orientation-dependent electron transport in a single redox protein. ACS Nano, 2012. 6(1): p. 355-361.
Zhang, X.Y., J. Shao, S.X. Jiang, B. Wang, and Y. Zheng, Structure-dependent electrical conductivity of protein: its differences between alpha-domain and beta-domain structures. Nanotechnology, 2015. 26(12): p. 125702.
Cametti, C., S. Marchetti, C.M.C. Gambi, and G. Onori, Dielectric Relaxation Spectroscopy of Lysozyme Aqueous Solutions: Analysis of the δ-Dispersion and the Contribution of the Hydration Water. The Journal of Physical Chemistry B, 2011. 115(21): p. 7144-7153.
Lodish, H., A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, L. Zipursky, and J. Darnell, Molecular Cell Biology. 2005: W. H. Freeman.
Keskin, O., A. Gursoy, B. Ma, and R. Nussinov, Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chemical Reviews, 2008. 108(4): p. 1225-1244.
Cozzolino, F., I. Iacobucci, V. Monaco, and M. Monti, Protein–DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. Journal of Proteome Research, 2021. 20(6): p. 3018-3030.
Ahmed, M.H., M.S. Ghatge, and M.K. Safo, Hemoglobin: Structure, Function and Allostery. Subcellular Biochemistry, 2020. 94: p. 345-382.
Jackson, C.B., M. Farzan, B. Chen, and H. Choe, Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022. 23(1): p. 3-20.
Zhou, M., Q. Li, and R. Wang, Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem, 2016. 11(8): p. 738-756.
Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 2006. 1(6): p. 2876-2890.
Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
Bakhtiar, R., Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a Biochemist’s Toolbox. Journal of Chemical Education, 2013. 90(2): p. 203-209.
Song, Y., V. Madahar, and J. Liao, Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Annals of Biomedical Engineering, 2011. 39(4): p. 1224-1234.
Chiesa, A., E. Rapizzi, V. Tosello, P. Pinton, M. de Virgilio, K.E. Fogarty, and R. Rizzuto, Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochemical Journal, 2001. 355(Pt 1): p. 1-12.
Hoppe, A., K. Christensen, and J.A. Swanson, Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophysical Journal, 2002. 83(6): p. 3652-3664.
Chen, Z., J. Wang, H. Wu, J. Yang, Y. Wang, J. Zhang, Q. Bao, M. Wang, Z. Ma, W. Tress, and Z. Tang, A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices. Nature Communications, 2022. 13(1): p. 4387.
Tamogami, J., T. Kikukawa, S. Miyauchi, E. Muneyuki, and N. Kamo, A tin oxide transparent electrode provides the means for rapid time-resolved pH measurements: application to photoinduced proton transfer of bacteriorhodopsin and proteorhodopsin. Photochemistry and Photobiology, 2009. 85(2): p. 578-589.
Robertson, B. and E.P. Lukashev, Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode. Biophysical Journal, 1995. 68(4): p. 1507-1517.
Chu, L.K., C.W. Yen, and M.A. El-Sayed, Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics, 2010. 26(2): p. 620-626.
Chen, Y.-H., A biophotonics based monitoring system for molecular interaction with subsecond resolution. in Department of Biochemical Science and Technology. 2022, National Taiwan University: Taipei, Taiwan., 2022.
Jollès, P. and J. Jollès, What's new in lysozyme research? Always a model system, today as yesterday. Molecular and Cellular Biochemistry, 1984. 63(2): p. 165-189.
Dickerson, R.E., J.M. Reddy, M. Pinkerton, and L.K. Steinrauf, Structure Of Lysozyme: A 6 Å Model of Triclinic Lysozyme. Nature, 1962. 196(4860): p. 1178-1178.
Ferraboschi, P., S. Ciceri, and P. Grisenti, Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel), 2021. 10(12).
Yang, T., G. Wei, and Z. Li, Electrostatic assembly of protein lysozyme on DNA visualized by atomic force microscopy. Applied Surface Science, 2007. 253(9): p. 4311-4316.
Steinrauf, L.K., D. Shiuan, W.J. Yang, and M.Y. Chiang, Lysozyme association with nucleic acids. Biochemical and Biophysical Research Communications, 1999. 266(2): p. 366-370.
Lin, K.C., M.T. Wey, L.S. Kan, and D. Shiuan, Characterization of the interactions of lysozyme with DNA by surface plasmon resonance and circular dichroism spectroscopy. Applied Biochemistry and Biotechnology, 2009. 158(3): p. 631-641.
中華民國89年11月23日(89)環署檢字第70017號公告
Chrysafides, S.M., S.J. Bordes, and S. Sharma, Physiology, Resting Potential, in StatPearls. 2023, StatPearls Publishing
Terry, C.A., M.-J. Fernández, L. Gude, A. Lorente, and K.B. Grant, Physiologically Relevant Concentrations of NaCl and KCl Increase DNA Photocleavage by an N-Substituted 9-Aminomethylanthracene Dye. Biochemistry, 2011. 50(47): p. 10375-10389.
Hindmarsh, P.C. and K. Geertsma, Chapter 19 - Glucose and Cortisol, in Congenital Adrenal Hyperplasia, P.C. Hindmarsh and K. Geertsma, Editors. 2017, Academic Press. p. 219-230.
5 Human Albumin. Transfusion Medicine and Hemotherapy, 2009. 36(6): p. 399-407.
Stanzick, K.J., J. Simon, M.E. Zimmermann, M. Schachtner, D. Peterhoff, H.H. Niller, K. Überla, R. Wagner, I.M. Heid, and K.J. Stark, DNA extraction from clotted blood in genotyping quality. Biotechniques, 2023. 74(1): p. 23-29.
Rao, S. and T. T, Role of direction of salt migration on the swelling behaviour of compacted clays. Applied Clay Science, 2007. 38: p. 113-129.
Praharaj, M., A. Satapathy, and I. Ahmed, Ultrasonic and Conductometric Studies of Aqueous Potassium Chloride Solutions at Different Temperatures. International Journal of Current Research and Academic Review, ISSN: 2347-3215 (Online), 2017. 5: p. 1-5.
Bava, L., M. Zucali, A. Sandrucci, M. Brasca, L. Vanoni, L. Zanini, and A. Tamburini, Effect of cleaning procedure and hygienic condition of milking equipment on bacterial count of bulk tank milk. Journal of Dairy Research, 2011. 78(2): p. 211-219.
Guzman-Otazo, J., L. Gonzales Strömberg, V. Poma, J. Bengtsson-Palme, K. Thorell, C.-F. Flach, V. Iniguez, and Å. Sjöling, Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLOS ONE, 2019. 14: p. e0210735.
Taha, T., M. Eldosoky, and A. Soliman, The effect of the loss tangent of the blood and the glucose on the perturbation of the shear horizontal surface acoustic wave. National Radio Science Conference, NRSC, Proceedings, 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90653-
dc.description.abstractITO Chamber為本實驗室先前所設計,在玻璃基板鍍上氧化銦錫(ITO)後,進行多種「畫絕緣線」設計的一種裝置,可以用來進行生物樣品的電導度測量。實驗室先前的研究成功地使用細菌視紫質供電的LV-ITO Chamber系統,測量不同濃度鹽類,及生物分子溶液的光電流差異,並應用於蛋白質-離子交互作用的檢測。這樣的結果啟發了我們將ITO Chamber與電導度計連接,組成CD-ITO Chamber系統,它具有方便快速、能及時偵測少量、不須額外處理樣品溶液電導度的特色。經我們實驗,證明了這套新系統能夠測量不同濃度無機物及生物分子電導度的差異。此外,我們也成功的應用CD-ITO Chamber系統對蛋白質-核酸交互作用進行檢測。過去的研究中指出,溶菌酶能夠以其表面攜帶的正電荷,非特異性地與帶負電的核酸結合;而牛血清白蛋白(BSA)則無法和核酸有交互結合作用。我們透過CD-ITO Chamber發現,不會與pUC18質體產生交互作用的牛血清白蛋白,與質體混合後的電導度會接近兩者各自電導度值的總和,相較之下,會與pUC18質體產生交互作用的溶菌酶則沒有這樣的現象。
這些結果,證實「畫絕緣線」ITO玻璃板,可以提供為一種多用途樣品乘載裝置,供生物分子或一般化學物質之結合做電導度量測。未來,將針對更多類型的生物分子交互作用做廣泛的測試,同時與現有測量交互作用的方法搭配使用,讓CD-ITO Chamber系統具備有實際應用的價值。
zh_TW
dc.description.abstractThe ITO Chamber featuring various "insulation line drawing" designs on a glass plate coated with indium tin oxide (ITO) is a device designed in our laboratory to conduct electrical conductivity measurements of biological samples. Previous research in our laboratory has shown that the LV-ITO Chamber system can measure the photocurrent difference with varying biomolecule concentrations and has been applied to measure protein-ion interactions. These results inspired us to connect the ITO Chamber with a conductivity meter, forming the CD-ITO Chamber system. It offers the convenience of rapid and real-time conductivity detection in small volumes of sample solutions without additional processing. Through our experiments, we have demonstrated that this new system can measure the differences in conductivity of different concentrations of both inorganic and biological molecules. Furthermore, we have successfully applied the CD-ITO Chamber system to detect protein-nucleic acid interactions. Previous research has shown that lysozyme non-specifically binds to the surface of negatively charged nucleic acids due to its positively charged, while bovine serum albumin (BSA) cannot interact with nucleic acids. Through the CD-ITO Chamber, we discovered that BSA, which does not interact with the pUC18 plasmid, exhibits a conductivity in the mixture that is close to the sum of the conductivity values measured individually for BSA and the plasmid. In contrast, lysozyme, which interacts with the pUC18 plasmid, does not exhibit such behavior.
These results confirm that the ITO Chamber can serve as a multipurpose sample-carrying device for the binding or conductivity measurement of biomolecules or general chemical substances. In the future, extensive testing will be conducted to explore a broader range of biomolecular interactions, while also integrating with existing methods for measuring interactions. This will enhance the practical applicability of the CD-ITO Chamber system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:02:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:02:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 x
第一章 緒論 1
第一節 電導度的定義與應用 1
第二節 蛋白質交互作用 3
第三節 偵測蛋白質交互作用的方法 4
1.3.1 圓偏光二色光譜 4
1.3.2 表面電漿共振 6
1.3.3 螢光共振能量轉移 7
1.3.4 偵測蛋白質交互作用方法的總結 8
第四節 ITO Chamber 10
1.4.1 氧化銦錫(ITO) 10
1.4.2 LV-ITO Chamber 12
1.4.3 LV-ITO Chamber應用於視紫質離子幫浦功能測定 14
1.4.4 LV-ITO Chamber應用於溶液電導度及蛋白質交互作用的量測 15
第五節 溶菌酶-核酸交互作用 17
第六節 研究目的 20
第二章 材料與方法 21
第一節 材料與藥品 21
2.1.1 大腸桿菌菌株 21
2.1.2 質體 21
2.1.3 蛋白質與藥品 21
第二節 實驗儀器 23
2.2.1 核酸電泳實驗儀器 23
2.2.2 離心機 23
2.2.3 光譜量測儀器 23
2.2.4 CD-ITO Chamber實驗儀器 23
2.2.5 蛋白質結構分析軟體 24
2.2.6 其他儀器 24
第三節 實驗方法 25
2.3.1 pUC18質體抽取 25
2.3.2 蛋白質配置 25
2.3.3 核酸濃度計算 25
2.3.4 蛋白質濃度計算 25
2.3.5 核酸電泳實驗 26
2.3.6 製備單槽ITO Chamber 26
2.3.7 架設CD-ITO Chamber 27
2.3.8 CD-ITO Chamber電導度實驗 28
第三章 實驗結果 29
第一節 CD-ITO Chamber 29
第二節 透過CD-ITO Chamber測量無機物溶液的電導度 31
3.2.1 鹽類 31
3.2.2 介面活性劑 32
第三節 透過CD-ITO Chamber測量生物分子溶液的電導度 33
3.3.1 醣類 33
3.3.2 蛋白質 35
3.3.3 核酸 36
第四節 透過不同類型的膠體電泳觀測蛋白質-核酸交互作用 37
3.4.1 瓊脂糖膠體電泳 39
3.4.2 低熔點瓊脂糖膠體電泳 40
第五節 透過CD-ITO Chamber檢測蛋白質-核酸交互作用 41
第四章 總結與討論 43
第一節 CD-ITO Chamber系統的特色 43
第二節 透過CD-ITO Chamber測量無機物及生物分子溶液電導度之分析 43
第三節 透過膠體電泳觀測蛋白質-核酸交互作用之分析 45
第四節 透過CD-ITO Chamber觀測蛋白質-核酸交互作用之分析 45
4.4.1 理論電導度的計算 46
4.4.2 蛋白質-pUC18混合物的理論電導度與實際電導度 47
第四節 結論 49
第五章 未來展望 50
第六章 參考文獻 51
-
dc.language.isozh_TW-
dc.subject無機物zh_TW
dc.subject生物分子zh_TW
dc.subject氧化銦錫微樣品槽系統zh_TW
dc.subject電導度zh_TW
dc.subject蛋白質-核酸交互作用zh_TW
dc.subjectCD-ITO Chamberen
dc.subjectbiological moleculesen
dc.subjectconductivityen
dc.subjectprotein-nucleic acid interactionsen
dc.subjectinorganic compoundsen
dc.title研發新型量測電導度變化之氧化銦錫微樣品槽系統:無機物和生物分子之案例研究測試zh_TW
dc.titleA novel indium tin oxide-based micro-chamber system for detecting conductivity changes: Case studies with inorganic and biological moleculesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳亘承;傅煦媛zh_TW
dc.contributor.oralexamcommitteeHsuan-Chen Wu;Hsu-Yuan Fuen
dc.subject.keyword氧化銦錫微樣品槽系統,電導度,無機物,生物分子,蛋白質-核酸交互作用,zh_TW
dc.subject.keywordCD-ITO Chamber,conductivity,inorganic compounds,biological molecules,protein-nucleic acid interactions,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202302361-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-03-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2028-07-31-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
2.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved