請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90649完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭舒婷 | zh_TW |
| dc.contributor.advisor | Su-Ting Cheng | en |
| dc.contributor.author | 佘岡祐 | zh_TW |
| dc.contributor.author | Gang-You She | en |
| dc.date.accessioned | 2023-10-03T17:01:10Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-28 | - |
| dc.identifier.citation | 中央氣象局(2009)。臺灣氣候變化統計報告。
中央銀行(2021),國際間央行為何視2%通膨率目標為主流信仰?檢索日期:2023年3月11日。檢自:https://knowledge.cbc.gov.tw/front/references/inpage/DC46B37E-391C-EC11-814B-2C44FD83FB4B 吳庭嘉、陳盟松(2020),龍眼因應氣候變遷之栽培管理調適措施。載於吳庭嘉、徐錦木、陳俊位、葉文彬、陳盟松、李紅曦,中部地區重要果樹因應氣候變遷栽培管理調適措施(頁27-30)。彰化縣:行政院農業委員會臺中區農業改良場。 周書立、張嵐雁(2019),龍眼栽培與利用。臺南區農業專訊,108,1–8。 翁叔平、楊承道(2012)。台灣地區月降雨及溫度 1 公里網格資料庫之建立(1960-2009)及其在近未來(2015-2039)的氣候推估應用。大氣科學,40,349-370。 財政部關務署(2023)。海關進出口統計,檢索日期:2023年2月20日。檢自:https://portal.sw.nat.gov.tw/APGA/GA30 張容慈、翁叔平(2022),氣候變遷對臺灣農作的影響: 以芒果為例。地理研究,76,43-64。 陳世芳(2019),做好農作物生產成本收益分析: 開源節流量入為出。臺中區農業專訊,105,7-10。 湯黎明(2016),氣候變遷對農業之影響:來自台灣的實證研究。國立臺灣大學生物環境系統工程學研究所碩士論文。 楊承道、王俊寓、林士堯(2023a),網格化觀測溫度資料生產履歷(4.2版) ,檢索日期:2023年2月20日。檢自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220706114121.pdf 楊承道、王俊寓、林士堯(2023b),網格化觀測雨量日資料生產履歷(4.1版) ,檢索日期:2023年2月20日。檢自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220706104221.pdf 農委會統計室(2019),主力農家所得調查結果(107年)。臺北市:農委會統計室。 農委會統計室(2022),主力農家所得調查結果(110年)。臺北市:農委會統計室。 農委會農業金融局(2022)。110年12月全體農漁會信用部牌告利率彙總表,檢索日期:2023年2月20日。檢自:https://www.boaf.gov.tw/view.php?theme=web_structure&id=4132 農委會農糧署(2023a)。農情報告資源網,檢索日期:2023年2月20日。檢自:https://agr.afa.gov.tw/afa/afa_frame.jsp 農委會農糧署(2023b)。農產品產地價格查報系統,檢索日期:2023年2月20日。檢自:https://apis.afa.gov.tw/pagepub/appinquirypage.aspx 農委會農糧署(2023c)。農產品生產成本調查系統,檢索日期:2023年2月20日。檢自:https://agrcost.afa.gov.tw/pagepub/AppContentPage.aspx?itemNo=COI121 衛服部社會救助及社工司(2023)。111年低收入戶及中低收入戶資格審核標準,檢索日期:2023年2月20日。檢自:https://dep.mohw.gov.tw/dosaasw/cp-566-63641-103.html 盧孟明、洪致文、涂建翊、黃威凱、周崇光、卓盈旻、鄭琇嬬、張順欽(2017),第五章 臺灣氣候觀測分析。載於許晃雄編,臺灣氣候變遷科學報告2017―物理現象與機制(頁383-442)。臺北市:國家災害防救科技中心。 盧虎生、姚銘輝、呂學榮、王淑音(2017),第六章 糧食生產和糧食安全。載於童慶斌編,臺灣氣候變遷科學報告2017―衝擊與調適面向(頁335-372)。臺北市:國家災害防救科技中心。 Bernstein, H. (2010). Class dynamics of agrarian change (Vol. 1). Kumarian Press. Duan, H., & Qian, H. (2010). Assessing the temperature risk to longan in South China based on ecological suitability theory. 2010 18th International Conference on Geoinformatics, 2010, 1-6 Ho, S.-T., Ifft, J. E., Rickard, B. J., & Turvey, C. G. (2018). Alternative Strategies to Manage Weather Risk in Perennial Fruit Crop Production. Agricultural and resource economics review, 47(3), 452-476. Holzkämper, A., Calanca, P., & Fuhrer, J. (2012). Statistical crop models: predicting the effects of temperature and precipitation changes. Climate research, 51(1), 11-21. Jahan, S. (2012). Inflation targeting: Holding the line. Finance & Development, 4, 72-73. Kulshreshtha, S., & Wheaton, E. (2013). Climate change adaptation and food production in Canada: Some research challenges. WIT Transactions on Ecology and the Environment, 170, 101-112. Lai, L.-W. (2022). Influence of warming climate and the green revolution on the optimum range of weather parameters of longan yield in Taiwan since 1909. Theoretical and applied climatology, 150(3-4), 1761-1773. Li, H. Q., Liu, X. L., Wang, J. H., Fu, Y. Y., Sun, X. P., & Xing, L. G. (2020). Impacts of climate change on potential geographical cultivation areas of longan (Dimocarpus longan) in China. The Journal of agricultural science, 158(6), 471-478. Luis G. Barioni, Tim G. Benton, Mario Herrero, Murukesan Krishnapillai et al.(2019). Chatpter 5: Food sectrity. In hukla, Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D., Zhai, P., Slade, R., Connors, S., Van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., … Malley, J., IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change (IPCC). Machovina, B., & Feeley, K. J. (2013). Climate change driven shifts in the extent and location of areas suitable for export banana production. Ecological economics, 95, 83-95. Malliaropulos, D. (2000). A note on nonstationarity, structural breaks, and the Fisher effect. Journal of Banking & Finance, 24(5), 695-707. Meinshausen, H. (2019). Implications of the Developed Scenarios for Climate Change. In Teske (Eds.), Achieving the Paris Climate Agreement Goals (pp.459-469). Springer International Publishing AG. Mitchell-Innes, H. A., Aziakpono, M. J., & Faure, A. P. (2007). Inflation targeting and the fisher effect in South Africa: An empirical investigation. South African Journal of Economics, 75(4), 693-707. Moragues-Faus, A. (2014). How is agriculture reproduced? Unfolding farmers' interdependencies in small-scale Mediterranean olive oil production. Journal of Rural Studies, 34, 139-151. Pham, V. T., Herrero, M., & Hormaza, J. I. (2015). Phenological growth stages of longan (Dimocarpus longan) according to the BBCH scale. Scientia horticulturae, 189, 201-207. Shi, S. Y., Li, W. C., Zhang, H. N., Liu, L. Q., Shu, B., Liang, Q. Z., Xie, J. H., & Wei, Y. Z. (2015). Application of extended Biologische Bundesantalt, Bundessortenamt and Chemische Industrie scale for phenological studies in longan (Dimocarpus longan). Annals of applied biology, 167(1), 127-134 Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'Ishi, R., . . . Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific model development, 12(7), 2727-2765. You, L., Rosegrant, M. W., Wood, S., & Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and forest meteorology, 149(6), 1009-1014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90649 | - |
| dc.description.abstract | 氣候變遷所帶來的暖化和極端乾旱、暴雨事件,已影響全球多數地區的農業生產。龍眼是臺灣重要的果樹之一,廣泛種植於中南部中低海拔山區,有著粗放且產量大的特性。為因應氣候變遷對龍眼產業帶來的挑戰,理解氣候因子與龍眼生產之間的關聯性,以擬訂調適策略及管理計畫,對龍眼產業的永續發展相當重要。本研究以臺灣中南部三大龍眼產區為研究區域,並搜集相關農業統計、氣候和社會經濟資料,建立龍眼產量、價格預測與農戶生計之整合系統動態模型。首先利用氣候因子模擬龍眼產量,再藉由供需法則推估市場價格,最後綜合各類社會經濟因子預測農家經濟變化,以評估氣候變遷下臺灣龍眼產業之韌性。
研究結果顯示龍眼前一年產量及冬季營養梢生長期氣溫為龍眼當年度產量之重要影響因子,其次為營養梢生長期雨量和開花期雨量。比對龍眼歷史產量資料,模型模擬結果的平均誤差(ME)、平均絕對誤差(MAE)、均方根誤差(RMSE)及平均絕對百分比偏差(MAPE)分別為-371.1 kg/ha、1526.4 kg/ha、2131.9 kg/ha及28.7%。於未來氣候變遷情境下,本研究發現無論是SSP1-2.6、SSP2-4.5、SSP3-7.0或SSP4-8.5情境下,全臺灣龍眼單位產量(kg/ha)都會下降,整體平均產量約下降30.9%,越南方的產區產量減損狀況越明顯。農家經濟推估結果顯示,高雄、臺南溪南地區的龍眼產業於未來氣候變遷下將難以達到經濟永續性,其它產區則恐面臨比過往更高的風險。 本研究建立之整合模型,可用來分析作物生長、天然災害、產地價格、社會經濟等層面對整體龍眼產業所造成的影響,以及在氣候變遷下所面臨的風險,可供農業從業人員和相關決策制定者參考。 | zh_TW |
| dc.description.abstract | The warming and extreme events of drought and heavy rainfall caused by climate change are negatively affecting agricultural production in many regions around the world. Longan, which is one of the important fruit trees in Taiwan, is widely cultivated in the middle and low-altitude mountainous areas of central and southern Taiwan, known for its extensive cultivation and high yield. To cope with the challenges posed by climate change, it is crucial to understand the relationship between climate factors and longan production. This understanding can help formulate adaptation strategies and management plans for the sustainable development of the longan industry.
This study focused on the three major longan production areas in central and southern Taiwan. Agricultural statistics, climate data, and socio-economic information were collected to establish an integrated system dynamic model for predicting longan yield, prices, and farmers' livelihoods. This model first simulated longan yield using climate factors, and then estimated market prices using law of supply and demand. Finally, various socio-economic factors were integrated to predict changes of farmers' livelihoods, evaluating the resilience of Taiwan's longan industry under climate change. The research results showed that for longan production, the previous year's longan yield and the winter temperature for the stage of shoot development were the most important factors affecting the longan yield, followed by the rainfall during the stage of shoot development and flowering. Based on historical data testing, the average error (ME), mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) of the model simulation results were -371.1 kg/ha, 1526.4 kg/ha, 2131.9 kg/ha, and 28.7% respectively. This study found that regardless of the SSP1-2.6, SSP2-4.5, SSP3-7.0, or SSP4-8.5 scenarios, longan yield per hectare in Taiwan would decrease, with a mean 30.9% lower than historical data, and the decline in southern was even more pronounced. The economic estimation results showed that the longan industry in Kaohsiung and southern Tainan area was not economically sustainable, while other production areas faced higher risks compared to the past. The integrated model developed in this study can be used to analyze the overall impact of crop growth, natural disasters, supply prices, socio-economic factors, and the risks faced by the longan industry under climate change. It can serve as a reference for agricultural practitioners and decision-makers. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:01:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:01:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iv Abstract v 目錄 vii 圖目錄 ix 表目錄 x 第一章 前言 1 1.1 研究背景與動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 氣候變遷對農業生產之影響 3 2.2 龍眼物候 4 2.3 氣候變遷對龍眼生產之影響 5 第三章 材料與方法 7 3.1 研究流程 7 3.2 研究資料 8 3.2.1 龍眼產區與產量資料 8 3.2.2 歷史與未來氣候資料 10 3.2.3 龍眼價格資料 11 3.2.4 龍眼生產成本資料 12 3.2.5 社會經濟資料 12 3.3 研究方法 13 3.3.1 氣候―龍眼產量子模型 13 3.3.2 龍眼產量―價格子模型 19 3.3.3 農家經濟子模型 22 3.3.4 模型校正與驗證 25 第四章 結果 27 4.1 子模型校正與驗證 27 4.1.1 氣候―龍眼產量子模型 27 4.1.2 龍眼產量―價格子模型 30 4.1.3 農家經濟子模型 32 4.2 未來龍眼產量推估 32 4.2.1 龍眼產量推估 32 4.2.2 龍眼價格推估 36 4.2.3 農業生產利潤推估 39 4.2.4 農戶存款推估 48 第五章 討論 57 5.1 龍眼生產面臨的氣候風險 57 5.2 龍眼產業的韌性評估 58 5.3 模型解釋能力和誤差來源討論 60 第六章 結論與建議 62 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 價格 | zh_TW |
| dc.subject | 農戶生計 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 物候 | zh_TW |
| dc.subject | 韌性 | zh_TW |
| dc.subject | 龍眼產量 | zh_TW |
| dc.subject | 系統動態模型 | zh_TW |
| dc.subject | Resilience | en |
| dc.subject | System dynamics model | en |
| dc.subject | Longan production | en |
| dc.subject | Price | en |
| dc.subject | Livelihood | en |
| dc.subject | Climate change | en |
| dc.subject | Phenology | en |
| dc.title | 氣候變遷下臺灣龍眼產業之韌性評估 | zh_TW |
| dc.title | Assessing the resilience of Taiwan longan agriculture in a changing climate | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 石曜合;衛強 | zh_TW |
| dc.contributor.oralexamcommittee | Yau-Huo Shr;Chiang Wei | en |
| dc.subject.keyword | 系統動態模型,龍眼產量,價格,農戶生計,氣候變遷,物候,韌性, | zh_TW |
| dc.subject.keyword | System dynamics model,Longan production,Price,Livelihood,Climate change,Phenology,Resilience, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202302233 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2026-07-28 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2026-07-28 | 6.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
