請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90633完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉如 | zh_TW |
| dc.contributor.advisor | Yu-Ju Chen | en |
| dc.contributor.author | 邱煥淇 | zh_TW |
| dc.contributor.author | Huan-Chi Chiu | en |
| dc.date.accessioned | 2023-10-03T16:57:01Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 2021, 71 (3), 209-249. DOI: https://doi.org/10.3322/caac.21660.
Molina, J. R.; Yang, P.; Cassivi, S. D.; Schild, S. E.; Adjei, A. A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008, 83 (5), 584-594. DOI: 10.4065/83.5.584 From NLM. Zito Marino, F.; Bianco, R.; Accardo, M.; Ronchi, A.; Cozzolino, I.; Morgillo, F.; Rossi, G.; Franco, R. Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int J Med Sci 2019, 16 (7), 981-989. DOI: 10.7150/ijms.34739 From NLM. Kohno, T.; Nakaoku, T.; Tsuta, K.; Tsuchihara, K.; Matsumoto, S.; Yoh, K.; Goto, K. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res 2015, 4 (2), 156-164. DOI: 10.3978/j.issn.2218-6751.2014.11.11 From NLM. Hsu, C.-H.; Tseng, C.-H.; Chiang, C.-J.; Hsu, K.-H.; Tseng, J.-S.; Chen, K.-C.; Wang, C.-L.; Chen, C.-Y.; Yen, S.-H.; Chiu, C.-H.; et al. Characteristics of young lung cancer: Analysis of Taiwan's nationwide lung cancer registry focusing on epidermal growth factor receptor mutation and smoking status. Oncotarget 2016, 7 (29). Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol Oncol 2018, 12 (1), 3-20. DOI: 10.1002/1878-0261.12155 From NLM. da Cunha Santos, G.; Shepherd, F. A.; Tsao, M. S. EGFR Mutations and Lung Cancer. Annual Review of Pathology: Mechanisms of Disease 2011, 6 (1), 49-69. DOI: 10.1146/annurev-pathol-011110-130206 (acccessed 2023/07/02). Hsu, K.-H.; Ho, C.-C.; Hsia, T.-C.; Tseng, J.-S.; Su, K.-Y.; Wu, M.-F.; Chiu, K.-L.; Yang, T.-Y.; Chen, K.-C.; Ooi, H.; et al. Identification of Five Driver Gene Mutations in Patients with Treatment-Naïve Lung Adenocarcinoma in Taiwan. PLOS ONE 2015, 10 (3), e0120852. DOI: 10.1371/journal.pone.0120852. Giaccone, G.; Herbst, R. S.; Manegold, C.; Scagliotti, G.; Rosell, R.; Miller, V.; Natale, R. B.; Schiller, J. H.; Von Pawel, J.; Pluzanska, A.; et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 1. J Clin Oncol 2004, 22 (5), 777-784. DOI: 10.1200/jco.2004.08.001 From NLM. Yu, J. Y.; Yu, S. F.; Wang, S. H.; Bai, H.; Zhao, J.; An, T. T.; Duan, J. C.; Wang, J. Clinical outcomes of EGFR-TKI treatment and genetic heterogeneity in lung adenocarcinoma patients with EGFR mutations on exons 19 and 21. Chin J Cancer 2016, 35, 30. DOI: 10.1186/s40880-016-0086-2 From NLM. Yun, C.-H.; Mengwasser, K. E.; Toms, A. V.; Woo, M. S.; Greulich, H.; Wong, K.-K.; Meyerson, M.; Eck, M. J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences 2008, 105 (6), 2070-2075. DOI: 10.1073/pnas.0709662105 (acccessed 2023/07/10). Karachaliou, N.; Barron, e. B.; Viteri, S.; Molina, M. A.; Rosell, R. Osimertinib: a breakthrough for the treatment of epidermal growth factor receptor mutant lung adenocarcinoma. Translational Cancer Research 2017, S117-S121. Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K. H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. New England Journal of Medicine 2017, 378 (2), 113-125. DOI: 10.1056/NEJMoa1713137 (acccessed 2023/07/10). Ahn, M. J.; Tsai, C. M.; Shepherd, F. A.; Bazhenova, L.; Sequist, L. V.; Hida, T.; Yang, J. C. H.; Ramalingam, S. S.; Mitsudomi, T.; Jänne, P. A.; et al. Osimertinib in patients with T790M mutation-positive, advanced non-small cell lung cancer: Long-term follow-up from a pooled analysis of 2 phase 2 studies. Cancer 2019, 125 (6), 892-901. DOI: 10.1002/cncr.31891 From NLM. Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019, 121 (9), 725-737. DOI: 10.1038/s41416-019-0573-8 From NLM. Mu, Y.; Hao, X.; Xing, P.; Hu, X.; Wang, Y.; Li, T.; Zhang, J.; Xu, Z.; Li, J. Acquired resistance to osimertinib in patients with non-small-cell lung cancer: mechanisms and clinical outcomes. Journal of Cancer Research and Clinical Oncology 2020, 146 (9), 2427-2433. DOI: 10.1007/s00432-020-03239-1. Bertoli, E.; De Carlo, E.; Del Conte, A.; Stanzione, B.; Revelant, A.; Fassetta, K.; Spina, M.; Bearz, A. Acquired Resistance to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer: How Do We Overcome It? In International Journal of Molecular Sciences, 2022; Vol. 23. Morgillo, F.; Della Corte, C. M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open 2016, 1 (3), e000060. DOI: 10.1136/esmoopen-2016-000060 From NLM. Yang, Z.; Yang, N.; Ou, Q.; Xiang, Y.; Jiang, T.; Wu, X.; Bao, H.; Tong, X.; Wang, X.; Shao, Y. W.; et al. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clin Cancer Res 2018, 24 (13), 3097-3107. DOI: 10.1158/1078-0432.Ccr-17-2310 From NLM. Knebel, F. H.; Bettoni, F.; Shimada, A. K.; Cruz, M.; Alessi, J. V.; Negrão, M. V.; Reis, L. F. L.; Katz, A.; Camargo, A. A. Sequential liquid biopsies reveal dynamic alterations of EGFR driver mutations and indicate EGFR amplification as a new mechanism of resistance to osimertinib in NSCLC. Lung Cancer 2017, 108, 238-241. DOI: https://doi.org/10.1016/j.lungcan.2017.04.004. Oxnard, G. R.; Hu, Y.; Mileham, K. F.; Husain, H.; Costa, D. B.; Tracy, P.; Feeney, N.; Sholl, L. M.; Dahlberg, S. E.; Redig, A. J.; et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients With EGFR T790M-Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncol 2018, 4 (11), 1527-1534. DOI: 10.1001/jamaoncol.2018.2969 From NLM. Ho, C. C.; Liao, W. Y.; Lin, C. A.; Shih, J. Y.; Yu, C. J.; Yang, J. C. Acquired BRAF V600E Mutation as Resistant Mechanism after Treatment with Osimertinib. J Thorac Oncol 2017, 12 (3), 567-572. DOI: 10.1016/j.jtho.2016.11.2231 From NLM. Lin, C. C.; Shih, J. Y.; Yu, C. J.; Ho, C. C.; Liao, W. Y.; Lee, J. H.; Tsai, T. H.; Su, K. Y.; Hsieh, M. S.; Chang, Y. L.; et al. Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: a genomic study. Lancet Respir Med 2018, 6 (2), 107-116. DOI: 10.1016/s2213-2600(17)30480-0 From NLM. Papadimitrakopoulou, V. A.; Wu, Y. L.; Han, J. Y.; Ahn, M. J.; Ramalingam, S. S.; John, T.; Okamoto, I.; Yang, J. C. H.; Bulusu, K. C.; Laus, G.; et al. Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Annals of Oncology 2018, 29, viii741. DOI: 10.1093/annonc/mdy424.064 (acccessed 2023/07/10). Chabon, J. J.; Simmons, A. D.; Lovejoy, A. F.; Esfahani, M. S.; Newman, A. M.; Haringsma, H. J.; Kurtz, D. M.; Stehr, H.; Scherer, F.; Karlovich, C. A.; et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016, 7, 11815. DOI: 10.1038/ncomms11815 From NLM. Fu, K.; Xie, F.; Wang, F.; Fu, L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. Journal of Hematology & Oncology 2022, 15 (1), 173. DOI: 10.1186/s13045-022-01391-4. Li, B. T.; Smit, E. F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A. N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. New England Journal of Medicine 2021, 386 (3), 241-251. DOI: 10.1056/NEJMoa2112431 (acccessed 2023/07/10). Hartmaier, R. J.; Markovets, A. A.; Ahn, M. J.; Sequist, L. V.; Han, J. Y.; Cho, B. C.; Yu, H. A.; Kim, S. W.; Yang, J. C.; Lee, J. S.; et al. Osimertinib + Savolitinib to Overcome Acquired MET-Mediated Resistance in Epidermal Growth Factor Receptor-Mutated, MET-Amplified Non-Small Cell Lung Cancer: TATTON. Cancer Discov 2023, 13 (1), 98-113. DOI: 10.1158/2159-8290.Cd-22-0586 From NLM. Sequist, L. V.; Han, J. Y.; Ahn, M. J.; Cho, B. C.; Yu, H.; Kim, S. W.; Yang, J. C.; Lee, J. S.; Su, W. C.; Kowalski, D.; et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol 2020, 21 (3), 373-386. DOI: 10.1016/s1470-2045(19)30785-5 From NLM. Durrant, D. E.; Morrison, D. K. Targeting the Raf kinases in human cancer: the Raf dimer dilemma. British Journal of Cancer 2018, 118 (1), 3-8. DOI: 10.1038/bjc.2017.399. Tomasini, P.; Walia, P.; Labbe, C.; Jao, K.; Leighl, N. B. Targeting the KRAS Pathway in Non-Small Cell Lung Cancer. Oncologist 2016, 21 (12), 1450-1460. DOI: 10.1634/theoncologist.2015-0084 From NLM. Sun, M.; Wang, X.; Xu, Y.; Sun, C.; Guo, Y.; Qiu, S.; Zhao, R.; Zhu, W.; Ma, K. Combined targeting of EGFR and BRAF triggers regression of osimertinib resistance by using osimertinib and vemurafenib concurrently in a patient with heterogeneity between different lesions. Thorac Cancer 2022, 13 (3), 514-516. DOI: 10.1111/1759-7714.14295 From NLM. Skoulidis, F.; Li, B. T.; Dy, G. K.; Price, T. J.; Falchook, G. S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. New England Journal of Medicine 2021, 384 (25), 2371-2381. DOI: 10.1056/NEJMoa2103695 (acccessed 2023/07/10). Doroshow, D. B.; Bhalla, S.; Beasley, M. B.; Sholl, L. M.; Kerr, K. M.; Gnjatic, S.; Wistuba, II; Rimm, D. L.; Tsao, M. S.; Hirsch, F. R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021, 18 (6), 345-362. DOI: 10.1038/s41571-021-00473-5 From NLM. Hwang, D. M.; Albaqer, T.; Santiago, R. C.; Weiss, J.; Tanguay, J.; Cabanero, M.; Leung, Y.; Pal, P.; Khan, Z.; Lau, S. C. M.; et al. Prevalence and Heterogeneity of PD-L1 Expression by 22C3 Assay in Routine Population-Based and Reflexive Clinical Testing in Lung Cancer. J Thorac Oncol 2021, 16 (9), 1490-1500. DOI: 10.1016/j.jtho.2021.03.028 From NLM. Peng, S.; Wang, R.; Zhang, X.; Ma, Y.; Zhong, L.; Li, K.; Nishiyama, A.; Arai, S.; Yano, S.; Wang, W. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Molecular Cancer 2019, 18 (1), 165. DOI: 10.1186/s12943-019-1073-4. Manabe, T.; Yasuda, H.; Terai, H.; Kagiwada, H.; Hamamoto, J.; Ebisudani, T.; Kobayashi, K.; Masuzawa, K.; Ikemura, S.; Kawada, I.; et al. IGF2 Autocrine-Mediated IGF1R Activation Is a Clinically Relevant Mechanism of Osimertinib Resistance in Lung Cancer. Molecular Cancer Research 2020, 18 (4), 549-559. DOI: 10.1158/1541-7786.MCR-19-0956 (acccessed 7/7/2023). Wang, R.; Yamada, T.; Kita, K.; Taniguchi, H.; Arai, S.; Fukuda, K.; Terashima, M.; Ishimura, A.; Nishiyama, A.; Tanimoto, A.; et al. Transient IGF-1R inhibition combined with osimertinib eradicates AXL-low expressing EGFR mutated lung cancer. Nature Communications 2020, 11 (1), 4607. DOI: 10.1038/s41467-020-18442-4. Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci 2020, 10, 31. DOI: 10.1186/s13578-020-00396-1 From NLM. Han, J.; Liu, Y.; Yang, S.; Wu, X.; Li, H.; Wang, Q. MEK inhibitors for the treatment of non-small cell lung cancer. Journal of Hematology & Oncology 2021, 14 (1), 1. DOI: 10.1186/s13045-020-01025-7. Gu, J.; Yao, W.; Shi, P.; Zhang, G.; Owonikoko, T. K.; Ramalingam, S. S.; Sun, S. Y. MEK or ERK inhibition effectively abrogates emergence of acquired osimertinib resistance in the treatment of epidermal growth factor receptor-mutant lung cancers. Cancer 2020, 126 (16), 3788-3799. DOI: 10.1002/cncr.32996 From NLM. Tan, A. C. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer 2020, 11 (3), 511-518. DOI: 10.1111/1759-7714.13328 From NLM. Chrzanowska, N. M.; Kowalewski, J.; Lewandowska, M. A. Use of Fluorescence In Situ Hybridization (FISH) in Diagnosis and Tailored Therapies in Solid Tumors. Molecules 2020, 25 (8). DOI: 10.3390/molecules25081864 From NLM. Devriese, L. A.; Bosma, A. J.; van de Heuvel, M. M.; Heemsbergen, W.; Voest, E. E.; Schellens, J. H. M. Circulating tumor cell detection in advanced non-small cell lung cancer patients by multi-marker QPCR analysis. Lung Cancer 2012, 75 (2), 242-247. DOI: https://doi.org/10.1016/j.lungcan.2011.07.003. Sokolenko, A. P.; Imyanitov, E. N. Molecular Diagnostics in Clinical Oncology. Front Mol Biosci 2018, 5, Review. DOI: 10.3389/fmolb.2018.00076. Ellison, G.; Zhu, G.; Moulis, A.; Dearden, S.; Speake, G.; McCormack, R. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples. J Clin Pathol 2013, 66 (2), 79-89. DOI: 10.1136/jclinpath-2012-201194 From NLM. Williams, H. L.; Walsh, K.; Diamond, A.; Oniscu, A.; Deans, Z. C. Validation of the Oncomine™ focus panel for next-generation sequencing of clinical tumour samples. Virchows Archiv 2018, 473 (4), 489-503. DOI: 10.1007/s00428-018-2411-4. Yu, T. M.; Morrison, C.; Gold, E. J.; Tradonsky, A.; Layton, A. J. Multiple Biomarker Testing Tissue Consumption and Completion Rates With Single-gene Tests and Investigational Use of Oncomine Dx Target Test for Advanced Non–Small-cell Lung Cancer: A Single-center Analysis. Clinical Lung Cancer 2019, 20 (1), 20-29.e28. DOI: https://doi.org/10.1016/j.cllc.2018.08.010. Takeyasu, Y.; Yoshida, T.; Motoi, N.; Teishikata, T.; Tanaka, M.; Matsumoto, Y.; Shinno, Y.; Okuma, Y.; Goto, Y.; Horinouchi, H.; et al. Feasibility of next-generation sequencing (Oncomine™ DX Target Test) for the screening of oncogenic mutations in advanced non-small-cell lung cancer patients. Japanese Journal of Clinical Oncology 2021, 51 (7), 1114-1122. DOI: 10.1093/jjco/hyab059 (acccessed 7/9/2023). Liu, Z.; Dong, X.; Li, Y. A Genome-Wide Study of Allele-Specific Expression in Colorectal Cancer. Frontiers in Genetics 2018, 9, Original Research. DOI: 10.3389/fgene.2018.00570. Kukurba, K. R.; Zhang, R.; Li, X.; Smith, K. S.; Knowles, D. A.; How Tan, M.; Piskol, R.; Lek, M.; Snyder, M.; MacArthur, D. G.; et al. Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues. PLOS Genetics 2014, 10 (5), e1004304. DOI: 10.1371/journal.pgen.1004304. Faulkner, S.; Dun, M. D.; Hondermarck, H. Proteogenomics: emergence and promise. Cell Mol Life Sci 2015, 72 (5), 953-957. DOI: 10.1007/s00018-015-1837-y From NLM. Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M. C.; Zimmerman, L. J.; Shaddox, K. F.; Kim, S.; et al. Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513 (7518), 382-387. DOI: 10.1038/nature13438. Pinter, F.; Papay, J.; Almasi, A.; Sapi, Z.; Szabo, E.; Kanya, M.; Tamasi, A.; Jori, B.; Varkondi, E.; Moldvay, J.; et al. Epidermal growth factor receptor (EGFR) high gene copy number and activating mutations in lung adenocarcinomas are not consistently accompanied by positivity for EGFR protein by standard immunohistochemistry. J Mol Diagn 2008, 10 (2), 160-168. DOI: 10.2353/jmoldx.2008.070125 From NLM. Tsao, M. S.; Yatabe, Y. Old Soldiers Never Die: Is There Still a Role for Immunohistochemistry in the Era of Next-Generation Sequencing Panel Testing? J Thorac Oncol 2019, 14 (12), 2035-2038. DOI: 10.1016/j.jtho.2019.09.007 From NLM. Popp, R.; Basik, M.; Spatz, A.; Batist, G.; Zahedi, R. P.; Borchers, C. H. How iMALDI can improve clinical diagnostics. Analyst 2018, 143 (10), 2197-2203, 10.1039/C8AN00094H. DOI: 10.1039/C8AN00094H. Liang, H.; Wang, M. MET Oncogene in Non-Small Cell Lung Cancer: Mechanism of MET Dysregulation and Agents Targeting the HGF/c-Met Axis. Onco Targets Ther 2020, 13, 2491-2510. DOI: 10.2147/ott.S231257 From NLM. Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422 (6928), 198-207. DOI: 10.1038/nature01511 From NLM. Sheynkman, G. M.; Shortreed, M. R.; Cesnik, A. J.; Smith, L. M. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation. Annu Rev Anal Chem (Palo Alto Calif) 2016, 9 (1), 521-545. DOI: 10.1146/annurev-anchem-071015-041722 From NLM. Zhu, Y.; Orre, L. M.; Johansson, H. J.; Huss, M.; Boekel, J.; Vesterlund, M.; Fernandez-Woodbridge, A.; Branca, R. M. M.; Lehtiö, J. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nature Communications 2018, 9 (1), 903. DOI: 10.1038/s41467-018-03311-y. Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nature Methods 2014, 11 (11), 1114-1125. DOI: 10.1038/nmeth.3144. Rodriguez, H.; Zenklusen, J. C.; Staudt, L. M.; Doroshow, J. H.; Lowy, D. R. The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 2021, 184 (7), 1661-1670. DOI: 10.1016/j.cell.2021.02.055 From NLM. Hembrough, T.; Thyparambil, S.; Liao, W.-L.; Darfler, M. M.; Abdo, J.; Bengali, K. M.; Taylor, P.; Tong, J.; Lara-Guerra, H.; Waddell, T. K.; et al. Selected Reaction Monitoring (SRM) Analysis of Epidermal Growth Factor Receptor (EGFR) in Formalin Fixed Tumor Tissue. Clinical Proteomics 2012, 9 (1), 5. DOI: 10.1186/1559-0275-9-5. Wang, Q.; Chaerkady, R.; Wu, J.; Hwang, H. J.; Papadopoulos, N.; Kopelovich, L.; Maitra, A.; Matthaei, H.; Eshleman, J. R.; Hruban, R. H.; et al. Mutant proteins as cancer-specific biomarkers. Proceedings of the National Academy of Sciences 2011, 108 (6), 2444-2449. DOI: 10.1073/pnas.1019203108 (acccessed 2023/03/12). Whiteaker, J. R.; Sharma, K.; Hoffman, M. A.; Kuhn, E.; Zhao, L.; Cocco, A. R.; Schoenherr, R. M.; Kennedy, J. J.; Voytovich, U.; Lin, C.; et al. Targeted mass-spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP kinase, and AKT signaling. Cell Reports Methods 2021, 1 (3), 100015. DOI: https://doi.org/10.1016/j.crmeth.2021.100015. Fernández-Costa, C.; Martínez-Bartolomé, S.; McClatchy, D. B.; Saviola, A. J.; Yu, N.-K.; Yates, J. R., III. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results. Journal of Proteome Research 2020, 19 (8), 3153-3161. DOI: 10.1021/acs.jproteome.0c00153. Ludwig, C.; Gillet, L.; Rosenberger, G.; Amon, S.; Collins, B. C.; Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 2018, 14 (8), e8126. DOI: 10.15252/msb.20178126 From NLM. Nigjeh, E. N.; Chen, R.; Brand, R. E.; Petersen, G. M.; Chari, S. T.; von Haller, P. D.; Eng, J. K.; Feng, Z.; Yan, Q.; Brentnall, T. A.; et al. Quantitative Proteomics Based on Optimized Data-Independent Acquisition in Plasma Analysis. J Proteome Res 2017, 16 (2), 665-676. DOI: 10.1021/acs.jproteome.6b00727 From NLM. Kim, Y. J.; Sweet, S. M. M.; Egertson, J. D.; Sedgewick, A. J.; Woo, S.; Liao, W. L.; Merrihew, G. E.; Searle, B. C.; Vaske, C.; Heaton, R.; et al. Data-Independent Acquisition Mass Spectrometry To Quantify Protein Levels in FFPE Tumor Biopsies for Molecular Diagnostics. J Proteome Res 2019, 18 (1), 426-435. DOI: 10.1021/acs.jproteome.8b00699 From NLM. Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 2009, 4 (1), 44-57. DOI: 10.1038/nprot.2008.211. Chan, H.-J. Development of Targeted Data-Independent Acquisition Mass Spectrometry for Multiplexed Quantification of Oncoprotein Mutations. National Taiwan University, 2021. Chen, L.-Y. Development of Targeted Mass Spectrometry Approach for Multiplexed Quantification of EGFR Mutations in Non-Small Cell Lung Cancer. National Taiwan University, 2022. Karachaliou, N.; Fernandez-Bruno, M.; Paulina Bracht, J. W.; Rosell, R. EGFR first- and second-generation TKIs—there is still place for them in EGFR -mutant NSCLC patients. Translational Cancer Research 2018, S23-S47. Chiva, C.; Sabidó, E. Peptide Selection for Targeted Protein Quantitation. Journal of Proteome Research 2017, 16 (3), 1376-1380. DOI: 10.1021/acs.jproteome.6b00115. Hoofnagle, A. N.; Whiteaker, J. R.; Carr, S. A.; Kuhn, E.; Liu, T.; Massoni, S. A.; Thomas, S. N.; Townsend, R. R.; Zimmerman, L. J.; Boja, E.; et al. Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry-Based Assays. Clin Chem 2016, 62 (1), 48-69. DOI: 10.1373/clinchem.2015.250563 From NLM. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90633 | - |
| dc.description.abstract | 肺癌為臺灣重大的健康問題之一,除了每年造成逾9000例死亡外,更是國民的癌症死因之首。雖然藥物標靶治療 (targeted therapy) 能夠治療因特定突變而起的肺癌,許多病人仍因致癌蛋白質 (oncoprotein) 繞過原來受抑制的標靶蛋白改由相關訊息傳遞路徑產生作用,或是受到其他致癌蛋白質影響而疾病復發。因此,為了晚期肺癌 (advanced lung cancer) 病人的治療,亟需建立能夠鑑定出新的藥物標靶蛋白質的分子檢測平台。現今制定治療方針時所採用的黃金標準(gold standard) 方法主要為分子基因型鑑定及免疫組織化學染色法,藥物標靶治療通常建立於對蛋白質的突變及過度表現之作用。然而,基因及蛋白質表現量之間呈低度相關,顯示基因型鑑定結果無法準確預測癌症的表現型。此外,在免疫分析方法中所需的特定抗體也限制了多重標靶蛋白分析的實驗通量。為了解決前述的挑戰,我們發展了一項具高靈敏度的標靶式數據非依賴性採集質譜技術 (targeting data-independent acquisition mass spectrometry, targeting DIA-MS) ,針對美國食品藥物管理局 (FDA) 認證的藥物標靶蛋白質進行多重檢測及定量。此方法能夠將10個非小細胞肺癌 (non-small-cell lung cancer, NSCLC) 藥物標靶蛋白質以及其8種突變蛋白質中,多達24條的胜肽序列成功定量。在細胞樣品中,相較於傳統-長資料採集區間DIA,我們的標靶式DIA方法應用在其目標之檢測時,能夠達成高達6倍的訊雜比 (signal-to-noise ratio),同時也提供15倍高的定量準確度與5倍高的精密度。我們也成功使用此標靶式質譜法,在異源移植的老鼠肺腫瘤組織中定量了EGFR的突變生肽,以及其他標靶蛋白。另外此方法也可以同時偵測非目標蛋白已獲得更多蛋白質體學資訊。綜上所述,我們的檢測方在提供醫師蛋白質定量上有極大的潛力,未來也將試著使用此法去定量抗藥性細胞株,以持續評估此法的有效性。 | zh_TW |
| dc.description.abstract | Lung cancer is a significant public health issue in Taiwan, causing more than 9,000 fatalities each year and being the leading cause of cancer death among the population. Although targeted therapies for certain mutations are available, most patients still relapse due to other oncoproteins and related pathways that bypass the previous drug target. Thus, there is a pressing need to develop a molecular diagnostic platform to identify alternative drug targets for advanced lung cancer patients. While molecular genotyping and immunohistochemistry are currently the gold standard tools to determine cancer treatment decisions, targeted therapy is typically based on the overexpression or mutation of protein. However, the low correlation between genomic and proteomic expression profiles means that DNA genotyping results cannot accurately predict the cancer phenotype. Additionally, the need for various antibodies and the subjectivity and semi-quantitative features in immunoassays limit the throughput of multi-target analysis. To address these challenges, we have developed a high-sensitivity targeting data-independent acquisition mass spectrometry assay for the multiplexed detection and absolute quantification of FDA-approved drug targets in lung cancer. With standard peptides and calibration curves, our method can quantify up to 24 target peptides covering 10 NSCLC drug targets and 8 oncogenic variants. Compared to conventional DIA, our targeted DIA can achieve a higher signal-to-noise ratio of up to 6-fold, an average 3.1-fold enhancement. Furthermore, for precision and accuracy, our methods provide better quantification outcomes, in which the relative error can reduce up to 15-fold, and the relative standard deviation can reduce up to 5-fold on the designed targets. We can also obtain the global proteome profile by the targeted DIA, with a similar identification sensitivity to the conventional DIA. This enables us to monitor the untargeted proteins and provides the opportunity for retrospective targeting. Our assay holds excellent potential for fulfilling unmet clinical needs and improving the management of advanced lung cancer patients. We will perform our methods on the drug resistance primary cell lines, and further evaluate the feasibility of the targeted DIA. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:57:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:57:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of Contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Lung Cancer and Significance of EGFR 1 1.2 EGFR Targeted Therapy and Acquired Resistance 3 1.3 Approaches for Drug targets detection 6 1.4 Mass spectrometry for quantification of oncoprotein mutations 8 1.5 Thesis Objectives 10 Chapter 2 Materials and Methods 11 2.1 Chemicals and Materials 11 2.2 Sample Preparation for LC-MS/MS 12 2.2.1 Cell Line and Cell Culture 12 2.2.2 Tissue Sample Collection and Membrane Protein Extraction 12 2.2.3 Membrane Protein Extraction from Cells 13 2.2.4 Gel-assisted Digestion 13 2.2.5 Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) Analysis 14 2.3 Data Processing and Analysis 15 2.3.1 Construction of Mutation Database 15 2.3.2 DDA Raw Data Processing 15 2.3.3 Construction of Mutation Database and Spectral Library 16 2.3.4 DIA Raw Data Processing 17 2.3.5 Statistics Analysis 18 2.3.6 Differential Expression and Pathway Enrichment Analysis 18 2.3.7 Annotation of Membrane Proteins and Drug Targets 19 Chapter 3 Results and Discussions 20 3.1 Experiment Design for Targeted DIA Quantification Assay 20 3.1.1 Selection of FDA-Approved Drug Target Proteins in NSCLC 21 3.1.2 Selection of Six Target Proteins and Peptide Design 23 3.2 Construction of Spectra Library for Targeted and Global DIA-based Proteomics 26 3.3 Development of Multi-targets IsoPS DIA-MS 27 3.3.1 Evaluation of Scanning Windows for IsoPS DIA 28 3.3.2 Design Strategy of Multi-targets IsoPS DIA-MS 29 3.4 Evaluation of Identification Coverage and Quantitation Performances 30 3.4.1 IsoPS DIA Enhanced Signal-to-Noise Ratio of Targeted Protein 31 3.4.2 Evaluation of Profiling Sensitivity of IsoPS DIA 32 3.4.3 Evaluation of Relative Quantification Performance of IsoPS DIA 33 3.5 Evaluation of Absolute Quantification Performance of Multi-targets IsoPS DIA 35 3.5.1 Construction of Calibration Curve by IsoPS DIA 35 3.5.2 Evaluation of the quantification performance by the synthetic peptides 36 3.6 Application of The Multi-Targets IsoPS DIA in Targeted Protein Quantification and Protein Profiling 37 3.6.1 Targeted Protein Quantification by Multi-Targets IsoPS DIA 38 3.6.2 The Global Proteome Profiling Analysis in Cell Lines and Xenograft Tissues Samples 41 Chapter 4 Conclusions 44 References 46 Figures 53 Tables 86 Supplementary Information 94 | - |
| dc.language.iso | en | - |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 標靶式數據非依賴性採集 | zh_TW |
| dc.subject | 質譜 | zh_TW |
| dc.subject | 蛋白質標靶 | zh_TW |
| dc.subject | 定量蛋白體學 | zh_TW |
| dc.subject | Mass spectrometry | en |
| dc.subject | Targeted data-independent acquisition | en |
| dc.subject | Protein Drug targets | en |
| dc.subject | Non-small cell lung cancer | en |
| dc.subject | Quantitative proteomics | en |
| dc.title | 開發客製化資料採集區間非資料採集式質譜分析法以定量多種肺癌相關標靶蛋白 | zh_TW |
| dc.title | Development A Variable Window DIA Method for Multiplexed Quantitation of Lung Cancer Drug Targets | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐丞志;俞松良 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Chih Hsu;Sung-Liang Yu | en |
| dc.subject.keyword | 非小細胞肺癌,質譜,標靶式數據非依賴性採集,蛋白質標靶,定量蛋白體學, | zh_TW |
| dc.subject.keyword | Non-small cell lung cancer,Mass spectrometry,Targeted data-independent acquisition,Protein Drug targets,Quantitative proteomics, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202303923 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 11.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
