請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90631完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王泰典 | zh_TW |
| dc.contributor.advisor | Tai-Tien Wang | en |
| dc.contributor.author | 蔡士元 | zh_TW |
| dc.contributor.author | CHUA SHUU GUAN | en |
| dc.date.accessioned | 2023-10-03T16:56:30Z | - |
| dc.date.available | 2025-12-17 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Barton, N. (2002). “Some new Q-value correlations to assist in site characterisation and tunnel design.” International Journal of Rock Mechanics and Mining Sciences, 39 (2), 185-216.
Barton, N., & Bar, N. (2019). “The Q-slope method for rock slope engineering in faulted rocks and fault zones.” ISRM 14th International Congress of Rock Mechanics: Rock Mechanics for Natural Resources and Infrastructure Development, Iguassu Falls, Brazil, 3424-3432. Barton, N., & Grimstad, E. (2004). “The Q-system following thirty years of development and application in tunnelling projects.” EUROCK04, Salzburg. Barton, N. R., Lien, R., & Lunde, J. (1974). “Engineering classification of rock masses for the design of tunnel support.” Rock Mechanics and Rock Engineering, 6 (4), 189-236. Bieniawski, Z. T. (1973). “Engineering classification of jointed rock masses.” Transactions of the South African Institution of Civil Engineers, 15, 335-344. Boyd, D. L., Walton, G., & Guitton, W. T. (2020). “Geostatistical estimation of ground class prior to and during excavation for the Caldecott Tunnel Fourth Bore project.” Tunnelling and Underground Space Technology, 100, 103391. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., & Lin, J. C. (2003). “Links between erosion, runoff variability and seismicity in the Taiwan orogen.” Nature, 426, 648-651. Deere, D. U., & Deere, D. W. (1989). “Rock quality designation (RQD) after twenty years.” Contract Report GL, 89 (1). Feng, X., & Jimenez., R. (2015). “Estimation of deformation modulus of rock masses based on Bayesian model selection and Bayesian updating approach.” Engineering Geology, 199, 19-27. Grasso, P., Pescara, M., & Soldo, L. (2016). “Risk management in tunnelling: a review of current practices and needs for future development from the designer's perspective.” In: International Tunnelling Association World Congress, San Francisco. Hatheway, A. W. (2005). “ENGINEERING GEOLOGY: Site Classification.” Encyclopedia of Geology, 1-9. Hasan, M., & Shang, Y. (2022). “Geophysical evaluation of geological model uncertainty for infrastructure design and groundwater assessments.” Engineering Geology, 299, 106560. ITA Working Group n°17 Long Tunnels at Great Depth (2017). “TBM Excavation of Long and Deep Tunnels Under Difficult Rock Conditions.” Report n.19. Ismail, M. A. M. I., Majid, T. A., Goh, C. O., Lim, S. P., & Tan, C. G. (2019). “Geological assessment for tunnel excavation under river with shallow overburden using surface site investigation data and electrical resistivity tomography.” Measurement, 144, 260-274. Keaton, J. R. (2013). “Engineering geology: fundamental input or random variable?” Foundation Engineering in the Face of Uncertainty, 232-253. Lee, S., & Tseng, D. (2011). “Review and perspective of expressway tunnels in Taiwan, China.” Journal of Rock Mechanics and Geotechnical Engineering, 3, 1, 385-397. Liu, C. N., Lin, F. C., Huang, H. H., Wang, Y., Berg, E. M., & Lin, C. H. (2021). “High-resolution 3-D shear wave velocity model of Northern Taiwan via Bayesian joint inversion of Rayleigh wave ellipticity and phase velocity with Formosa array.” Journal of Geophysical Research: Solid Earth, 126 (5). Lo, P. C., Lo, W., Wang, T. T., & Hsieh, Y. C. (2021). “Application of Geological Mapping Using Airborne-Based LiDAR DEM to Tunnel Engineering: Example of Dongao Tunnel in Northeastern Taiwan.” Applied Sciences, 11, 4404. Ma, X., Xue, Y., Qiu, D., Xia, T., Qu, C., & Kong, F. (2023).“Classification for tunnel surrounding rock based on multiple geological methods and extension model.” Bulletin of Engineering Geology and the Environment, 82, 109. Mitchell, T.M., & Faulkner, D. R. (2009). “The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile.” Journal of Structural Geology, 31 (8), 802-816. Parry, S., Baynes, F. J., Culshaw, M. G., Eggers, M., Keaton, J. F., Lentfer, K., Novotny, J., & Paul, D. (2014). “Engineering geological models: an introduction: IAEG Commission 25.” Bulletin of Engineering Geology and Environment, 73, 689-706. Shieh, S. L. (2000). “Users’ Guide for Typhoon Forecasting in the Taiwan Area (VIII).” Central Weather Bureau, Taipei. Soldo, L., Vendramini, M., & Eusebio, A. (2019). “Tunnel design and geological studies.” Tunnelling and Underground Space Technology, 84, 82-98. Sun, L. C. (2000). “Engineering geologic characteristics of tunnelling in Taiwan.” Sino-Geotechnics, 79, 71-80. Teng, L. S., Lee, C. T., Peng, C. H., Chen, W. F., & Chu, C. J. (2001). “Origin and geological evolution of the Taipei Basin, northern Taiwan.” Western Pacific Earth Sciences, 1 (2), 115-142. Thum, L., & Paoli, R. D. (2015). “2D and 3D GIS-based geological and geomechanical survey during tunnel excavation.” Engineering Geology, 192, 19-25. Walpole, R. E., Myers, R. H., Myers S. L., & Ye, K. (2011). “Probability & statistics for engineers & scientists, 9th edition.” Pearson Education, Inc. Wang, Y., & Aladejare, A. E. (2016). “Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site.” Rock Mechanics and Rock Engineering, 49, 3559-3573. Wang, T. T., Huang, T. H., Lin, M. L., Jeng, F. S., & Chiang, X. Y. (2002). “The assessment, investigation, evaluation and countermeasure to unusual tunnel geologies in Taiwan, case of squeezing ground.” Sino-Geotechnics, 7, 15-22. Wellmann, J. F., & Caumon, G. (2018). “3-D Structural geological models: Concepts, methods, and uncertainties.” Advances in Geophysics, 59, 1-121. Wellmann, J. F., Horowitz, F. G., Schill, E., & Regenauer-Lieb, K. (2010). “Towards incorporating uncertainty of structural data in 3D geological inversion.” Tectonophysics, 490 (3-4), 141-151. Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). “Velocity field of GPS stations in the Taiwan area.” Tectonophysics, 274 (1-3), 41-59. Yeh, C. H., Dong, J. J., Khoshnevisan, S., Juang, C. H., Huang, W. C., & Lu, Y. C. (2021). “The role of the geological uncertainty in a geotechnical design - A retrospective view of Freeway No. 3 Landslide in Northern Taiwan.” Engineering Geology, 291. Fisher, B. R., & Eberhardt E. (2012). “Assessment of Parameter Uncertainty Associated with Dip Slope Stability Analyses as a Means to Improve Site Investigations.” Journal of Geotechnical and Geoenvironmental Engineering, 138 (2), 115-240. 胡剛 & 毛爾威(1996)。「桃園,臺灣地質圖幅及說明1/50,000」,經濟部中央地質調查所。 王泰典(2003)。「岩石隧道擠壓變形模式之研究」,博士論文,台灣大學土木工程研究所,臺北。 林啟文 & 張育仁(2014)。「桃園,臺灣地質圖幅及說明1/50,000第二版」,經濟部中央地質調查所。 吳啟順, 顏呈仰, 傅賜榮 & 陳宣佑(2020)。 「阿姆坪防淤隧道工程」,大地技師期刊,20,44-52。 經濟部水利署北區水資源局(2022)。「石門水庫防淤隧道工程計畫(第1階段)-阿姆坪防淤隧道工程計測紀實總結報告」,未出版。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90631 | - |
| dc.description.abstract | 工程地質模型整合大地工程工址調查之地質條件及其地質材料空間分佈,以作為地質師與工程師必要之溝通工具。隧道工程經常面對未知及複雜場址之地質條件,故工程地質模型之精度有必要隨工程作業及地質調查階段的推進而逐步提高。然而,既有隧道工程通常只採用傳統的地質測繪方法作地下空間之地質詮釋並未應用隧道開挖面之地質資訊建立地真模型。
本研究介紹地質模型於隧道工程之應用及其地質不確定性。在隧道施工階段,岩層界面直接顯露於開挖面上故可藉由隧道開挖面影像評估隧道輪進開挖至每段里程之地質資訊。其出露之岩性屬1:1場址比例並同時揭示地表面下水平隧道線性之岩層特性及其空間分佈。因此,本研究提出藉由開挖面影像建立隧道沿線之工程地質模型,又稱地真模型,以評估規劃設計階段隧道地質剖面的變異。 本研究旨在建立一個半自動化的隧道開挖面平台,將每一輪進之開挖面影像整合與三維視覺化展示岩層交線,並以點與線標示開挖剖面岩層交線從而建立向量關係式以進行其層面之數學回歸和統計變異分析。開挖面影像存在一定的誤差來源,進而降低其地質模型之準確性。因此,本研究建立一套誤差評估方法以量化隧道開挖面上回歸交線與真實交線之間的方向、角度和位置偏差。 通過隧道開挖之地質記錄,工程地質模型可以得到精進並降低其地質不確定性,故地層或岩段之交界帶可配合地真資料的詮釋作劃分與展示。本研究所建置之地真模型可供隧道施工作即時回饋與設計調整,並與規設階段之隧道地質模型作變異比較以指引地質調查作業。對比地質調查資料,斷層帶水平寬度及其與隧道交匯之位置推估存在顯著的差異。隧道開挖遭遇斷層帶將大幅提高其地質不確定性並增加隧道災變之風險。 | zh_TW |
| dc.description.abstract | Engineering geological model is initiated as an essential tool to demonstrate the accumulation of physical properties underground for subsequent geotechnical engineering analysis, both acknowledged by geologists and engineers. In tunnel engineering projects, distinct phases of geological investigation require specific models to be adapted, at varying scales, due to the uncertainties that come from inadequate and insufficient knowledge of geological settings. Unknowns of surficial geologic conditions are inversely proportional to the amount and integrity of site reconnaissance. However, geotechnical site investigations for underground excavation usually consist of traditional geologic field mapping methods yet do not contribute to further geologic interpretation for volumetric modelling and visualization in support of subsurface ground-truth data.
A review of geological modelling for the purposes of engineering application has been highlighted in this research. Tunnel excavation face exposes directly to subsurface distribution of lithology under construction stages of tunnelling project. As rock contact disclosure by tunnel face images, these data reveal the lithological characteristics at a 1:1 site scale beneath the ground in which rock unit can be determined along the alignment of tunnel for geological interpretation. Hereby, a data-driven approach is proposed in this research based on the implementation of tunnel face image for the establishment of engineering geological model. In association with this approach, the augmented engineering geological model is also known as the ground-truth model. This research aims to construct a semi-automated tunnel excavation face platform for the 3D representation of boundary between two rock units and quantify the contacts for vector mathematical interpretation and statistical analysis. Image data is subject to various sources of error, leading to a reduction in geo-model accuracy. Thus, error assessment is conducted to outline the deviation in terms of direction, angle and position between the mean and true interface line of intersection on the tunnel face. It is followed by the development of ground-truth model and subsequently compared with reconnaissance geological data towards an evaluation of geological variation in space. Engineering geological models can be refined and augmented with underground excavation-based records to a certain level of accuracy. Stratigraphic transition zone between two geologic formations can be determined based on ground-truth interpretation. In comparison with several types of reconnaissance data, there exhibits a significant variation in estimation of the fault zone’s width and its location with respect to tunnel station. The existence of fault-related stratum leads to a rise in uncertainty and geohazard risk for tunnel excavation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:56:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:56:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
Acknowledgement II 摘要 III Abstract IV Table of Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Research motivation 1 1.2 Research objectives 3 1.3 Thesis outline and research flowchart 4 Chapter 2 Literature Review 6 2.1 Introduction 6 2.1.1 Engineering project and site characterization 6 2.1.2 Tunnel engineering in Taiwan 8 2.1.3 Investigation method under four stages of tunnel geo-investigation 9 2.1.4 Rock engineering parameters 12 2.2 Engineering geological model 14 2.2.1 Tunnel excavation face examination and engineering geo-modelling 17 2.2.2 A Python-based geomodelling 18 2.3 Geological uncertainty 23 2.4 Case study: Amuping Sediment Bypass Tunnel 26 Chapter 3 Research Methodology 31 3.1 Framework and flow chart 33 3.2 Tools for the development of tunnel face platform and geo-modelling 36 3.3 Excavation face platform 38 3.3.1 Identifying lithological boundary 38 3.3.2 Image rectification and augmentation 41 3.3.3 Platform visualization and workflow 43 3.4 Quantification of lithological boundary 45 3.4.1 Vectorized geometrical representations 45 3.4.2 Coding and calculation schemes 50 3.4.3 Statistical analysis of discontinuities’ normal vectors 51 3.5 Image error evaluation 53 3.5.1 Error indices Ev and Ed 53 3.5.2 Studies on the deviation due to oblique and high-angle camera shots 56 3.6 Geological characteristics on tunnel face within Hsintien fault zone 60 Chapter 4 Result and Discussion 63 4.1 Geo-model under feasibility studies and planning stages 63 4.2 Tunnel face platform and error assessment under construction stages 65 4.2.1 Image deviation along the linear main tunnel alignment 66 4.2.2 Image deviation between curved adit and linear main tunnel 74 4.3 Application: ground-truth model and its variability evaluation 85 4.3.1 Ground-truth model and variability evaluation at the tunnel intake zone 85 4.3.2 Ground-truth model and variability evaluation within Hsintien fault zone 99 Chapter 5 Conclusion and Recommendation 120 5.1 Conclusions 120 5.2 Suggestions and recommendations 122 References 123 Appendix A Tunnel face images 128 Appendix B RMR Geomechnical Records 132 Appendix C Questions and Suggestions from Oral Defense Committee 135 | - |
| dc.language.iso | en | - |
| dc.subject | 工程地質模型 | - |
| dc.subject | 隧道開挖面 | - |
| dc.subject | 岩性界面 | - |
| dc.subject | 統計分析 | - |
| dc.subject | 誤差評估 | - |
| dc.subject | 斷層帶 | - |
| dc.subject | Engineering geological model | - |
| dc.subject | Tunnel excavation face | - |
| dc.subject | Lithological contact | - |
| dc.subject | Statistical analysis | - |
| dc.subject | Error assessment | - |
| dc.subject | Fault zone | - |
| dc.title | 利用開挖面影像建置岩石隧道沿線地質模型及規設階段地質剖面變異比較 | zh_TW |
| dc.title | Augmentation on subsurface geological model along the rock tunnel using tunnel face images and variability evaluation with geologic cross-section profile under planning and design stage | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 董家鈞;黃文正;陳麒文;林錫宏 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Jyun Dong;Wen-Jeng Huang;Chi-Wen Chen;Hsi-Hung Lin | en |
| dc.subject.keyword | 工程地質模型,隧道開挖面岩性界面統計分析誤差評估斷層帶 | zh_TW |
| dc.subject.keyword | Engineering geological model,Tunnel excavation faceLithological contactStatistical analysisError assessmentFault zone | en |
| dc.relation.page | 139 | - |
| dc.identifier.doi | 10.6342/NTU202303130 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 19.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
