Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐澔德zh_TW
dc.contributor.advisorJ Bruce H. Shyuen
dc.contributor.author李岳洋zh_TW
dc.contributor.authorYueh-Yang Leeen
dc.date.accessioned2023-10-03T16:56:13Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAlves, E. Q., Macario, K., Ascough, P., & Bronk Ramsey, C. (2018). The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects. Reviews of Geophysics, 56(1), 278–305. https://doi.org/10.1002/2017rg000588
Arnold, J. R., & Libby, W. F. (1949). Age determinations by radiocarbon content: Checks with samples of known age. Science, 110(2869), 678–680. https://doi.org/10.1126/science.110.2869.678
Asami, R. (2005). Interannual and decadal variability of the Western Pacific sea surface condition for the years 1787–2000: Reconstruction based on stable isotope record from a Guam coral. Journal of Geophysical Research, 110(C5). https://doi.org/10.1029/2004jc002555
Bevington, P. R., & Robinson, D. K. (2003). Data reduction and error analysis for the Physical Sciences (3rd ed.). McGraw-Hill.
Bolton, A., Goodkin, N. F., Druffel, E. R., Griffin, S., & Murty, S. A. (2016a). Upwelling of Pacific Intermediate Water in the South China Sea revealed by Coral Radiocarbon record. Radiocarbon, 58(1), 37–53. https://doi.org/10.1017/rdc.2015.4
Burr, G. S., Beck, J. W., Corrège, T., Cabioch, G., Taylor, F. W., & Donahue, D. J. (2009). Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon, 51(1), 319–335. https://doi.org/10.1017/s0033822200033853
Burr, G. S., Beck, J. W., Taylor, F. W., Récy, J., Edwards, R. L., Cabioch, G., Corrège, T., Donahue, D. J., & O'malley, J. M. (1998). A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon, 40(3), 1093–1105. https://doi.org/10.1017/s0033822200019147
Bush, S. (2013). Simple, rapid, and cost effective: A screening method for 14C analysis of small carbonate samples. Radiocarbon, 55(3–4). https://doi.org/10.2458/azu_js_rc.55.16192
Chen, Y.-G., & Liu, T.-K. (1996). Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait. Quaternary Research, 45(3), 254–262. https://doi.org/10.1006/qres.1996.0026
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., & Calvin Alexander, E. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371–372, 82–91. https://doi.org/10.1016/j.epsl.2013.04.006
Chiang, H.-W., Shyu, J. B., Liu, S.-C., Wang, C.-C., Shen, C.-C., Burr, G. S., & Wang, S.-L. (2019). Fluctuations in Marine Radiocarbon Reservoir Age in the Western Pacific: Evidence of Reduced E-W Pacific Gradient over the Past 6000 Years. ESS Open Archive. https://doi.org/10.1002/essoar.10501481.1
Chiu, T.-C, Fairbanks, R. G., Mortlock, R. A., & Bloom, A. L. (2005). Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals. Quaternary Science Reviews, 24(16-17), 1797–1808. https://doi.org/10.1016/j.quascirev.2005.04.002
Chu, T. Y. (1971): Environmental study of the surrounding waters of Taiwan. Acta Oceanography Taiwanica, Science Reports of the Taiwan University, 1, 15–22.
Chung, S.-L., Sun, S.-su, Tu, K., Chen, C.-H., & Lee, C.-yu. (1994). Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 112(1-2), 1–20. https://doi.org/10.1016/0009-2541(94)90101-5
Cobb, K. M., Charles, C. D., Cheng, H., Kastner, M., & Edwards, R. L. (2003). U/Th-dating living and young fossil corals from the Central Tropical Pacific. Earth and Planetary Science Letters, 210(1–2), 91–103. https://doi.org/10.1016/s0012-821x(03)00138-9
Coplen, T. B. (1994). Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report). Pure and Applied Chemistry, 66(2), 273–276. https://doi.org/10.1351/pac199466020273
Cross, T. S., & Cross, B. W. (1983). U, Sr, and Mg in Holocene and Pleistocene corals A. palmata and M. annularis. SEPM Journal of Sedimentary Research, Vol. 53. https://doi.org/10.1306/212f823d-2b24-11d7-8648000102c1865d
Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use Welch’s T-test instead of Student’s T-test. International Review of Social Psychology, 30(1), 92–101. https://doi.org/10.5334/irsp.82
Donahue, D. J., Linick, T. W., & Jull, A. J. (1990). Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon, 32(2), 135–142. https://doi.org/10.1017/s0033822200040121
Edwards, R. L. (1988). High precision thorium-230 ages of corals and the timing of sea level fluctuations in the late Quaternary [Doctoral dissertation, California Institute of Technology]. doi:10.7907/S2FW-0463. https://resolver.caltech.edu/CaltechETD:etd-10112005-103528
Edwards, R. L., Gallup, C. D., & Cheng, H. (2003). 9. Uranium-series dating of marine and lacustrine carbonates. Uranium-Series Geochemistry, 363–406. https://doi.org/10.1515/9781501509308-014
Fang, G., Wei, Z., Choi, B.-H., Wang, K., Fang, Y., & Li, W. (2003). Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model. Science in China Series D: Earth Sciences, 46(2), 149–161. https://doi.org/10.1360/03yd9014
Fontugne, M., Carré, M., Bentaleb, I., Julien, M., & Lavallée, D. (2004). Radiocarbon Reservoir age variations in the South Peruvian upwelling during the Holocene. Radiocarbon, 46(2), 531–537. https://doi.org/10.1017/s003382220003558x
Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J.-x., Ayliffe, L. K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y.-x., Cartwright, I., Pierre, E. S., Fischer, M. J., & Suwargadi, B. W. (2009). Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geoscience, 2(9), 636–639. https://doi.org/10.1038/ngeo605
Grothe, P. R., Cobb, K. M., Bush, S. L., Cheng, H., Santos, G. M., Southon, J. R., Lawrence Edwards, R., Deocampo, D. M., & Sayani, H. R. (2016). A comparison of U/Th and rapid‐screen 14C dates from Line Island fossil corals. Geochemistry, Geophysics, Geosystems, 17(3), 833–845. https://doi.org/10.1002/2015gc005893
Heaton, T. J., Bard, E., Bronk Ramsey, C., Butzin, M., Hatté, C., Hughen, K. A., Köhler, P., & Reimer, P. J. (2022). A response to community questions on the MARINE20 radiocarbon age calibration curve: Marine Reservoir Ages and the calibration of 14C samples from the oceans. Radiocarbon, 65(1), 247–273. https://doi.org/10.1017/rdc.2022.66
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., & Skinner, L. C. (2020). MARINE20—The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon, 62(4), 779–820. https://doi.org/10.1017/rdc.2020.68
Hibbert, F. D., Rohling, E. J., Dutton, A., Williams, F. H., Chutcharavan, P. M., Zhao, C., & Tamisiea, M. E. (2016). Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1–56. https://doi.org/10.1016/j.quascirev.2016.04.019
Hirabayashi, S., Yokoyama, Y., Suzuki, A., Miyairi, Y., & Aze, T. (2017). Short-term fluctuations in regional radiocarbon reservoir age recorded in coral skeletons from the Ryukyu Islands in the north-western Pacific. Journal of Quaternary Science, 32(1), 1–6. https://doi.org/10.1002/jqs.2923
Hirabayashi, S., Yokoyama, Y., Suzuki, A., Esat, T., Miyairi, Y., Aze, T., Siringan, F., & Maeda, Y. (2019). Local marine reservoir age variability at Luzon Strait in the South China Sea during the Holocene. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 455, 171–177. https://doi.org/10.1016/j.nimb.2018.12.001
Hideshima, S., Matsumoto, E., Abe, O., & Kitagawa, H. (2001). Northwest Pacific marine reservoir correction estimated from annually banded coral from Ishigaki Island, southern Japan. Radiocarbon, 43(2A), 473–476. https://doi.org/10.1017/s0033 822200038352
Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610–1614. https://doi.org/10.1126/science.1215507
Hogg, R. V., Tanis, E. A., & Zimmerman, D. L. (2011). Probability and statistical inference (9th ed.). Pearson Education Limited.
Hong, H., Chai, F., Zhang, C., Huang, B., Jiang, Y., & Hu, J. (2011). An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait. Continental Shelf Research, 31(6). https://doi.org/10.1016/j.csr.2011.02.002
Hsieh, M.-L., & Chyi, S.-J. (2010). Late Quaternary mass-wasting records and formation of fan terraces in the Chen-Yeo-Lan and Lao-Nung catchments, Central-Southern Taiwan. Quaternary Science Reviews, 29(11–12), 1399–1418. https://doi.org/10.1016/j.quascirev.2009.10.002
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., Gordon, A. L., Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T., Kashino, Y., Wang, F., & Kessler, W. S. (2015). Pacific western boundary currents and their roles in climate. Nature, 522(7556), 299–308. https://doi.org/10.1038/nature14504
Hu, J., Kawamura, H., Li, C., Hong, H., & Jiang, Y. (2010). Review on current and seawater volume transport through the Taiwan Strait. Journal of Oceanography, 66(5), 591–610. https://doi.org/10.1007/s10872-010-0049-1
Hu, J., Kawamura, H., Hong, H., and Pan, W. (2003). A review of research on the upwelling in the Taiwan Strait. Bulletin of Marine Sciences, 73(3), 605–628. doi: 10.1590/S0100-879X2003001100017
Hua, Q., Ulm, S., Yu, K., Clark, T. R., Nothdurft, L. D., Leonard, N. D., Pandolfi, J. M., Jacobsen, G. E., & Zhao, J.-xin. (2020). Temporal variability in the Holocene marine radiocarbon reservoir effect for the tropical and South Pacific. Quaternary Science Reviews, 249, 106613. https://doi.org/10.1016/j.quascirev.2020.106613
Hu, J., & Wang, X. H. (2016). Progress on upwelling studies in the China Seas. Reviews of Geophysics, 54(3), 653–673. https://doi.org/10.1002/2015rg000505
Hua, Q., Webb, G. E., Zhao, J.-Xin, Nothdurft, L. D., Lybolt, M., Price, G. J., & Opdyke, B. N. (2015). Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes. Earth and Planetary Science Letters, 422, 33–44. https://doi.org/10.1016/j.epsl.2015.03.049
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4(5), 1889–1906. https://doi.org/10.1103/physrevc.4.1889
Jan, S., & Chao, S.-Y. (2003). Seasonal variation of volume transport in the major inflow region of the Taiwan Strait: The penghu channel. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7), 1117–1126. https://doi.org/10.1016/s0967-0645(03)00013-4
Jan, S., Lien, R.-C., & Ting, C.-H. (2008). Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography, 64(5), 789–802. https://doi.org/10.1007/s10872-008-0066-5
Jan, S., Sheu, D. D., & Kuo, H.-M. (2006). Water mass and throughflow transport variability in the Taiwan Strait. Journal of Geophysical Research, 111(C12). https://doi.org/10.1029/2006jc003656
Jan, S., Tseng, Y.-H., & Dietrich, D. E. (2010). Sources of water in the Taiwan Strait. Journal of Oceanography, 66(2), 211–221. https://doi.org/10.1007/s10872-010-0019-7
Jan, S., Wang, J., Chern, C.-S., & Chao, S.-Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3–4), 249–268. https://doi.org/10.1016/s0924-7963(02)00130-6
Klein, C., Dana, J. D., & Hurlbut, C. S. (1999). Manual of Mineralogy. Wiley.
Konishi K, T.Tanaka T, Sakanoue M. 1982. Secular variation of radiocarbon concentrations in seawater: Sclerochronological approach. In: Gomez ED, editor. Proceedings of the Fourth International Coral Reef Symposium. Volume 1. Manila: Marine Science Center, University of the Phillipines. p 181–5.
Lal, D., & Peters, B. (1967). Cosmic ray produced radioactivity on the Earth. Kosmische Strahlung II / Cosmic Rays II, 551–612. https://doi.org/10.1007/978-3-642-46079-1_7
Lallemand, S., Lehu, R., Rétif, F., Hsu, S.-K., Babonneau, N., Ratzov, G., Bassetti, M.-A., Dezileau, L., Hsieh, M.-L., & Dominguez, S. (2016). A ~3000 years-old sequence of extreme events revealed by marine and shore deposits east of Taiwan. Tectonophysics, 692, 325–341. https://doi.org/10.1016/j.tecto.2015.11.001
Latorre, C., De Pol-Holz, R., Carter, C., & Santoro, C. M. (2017). Using archaeological shell middens as a proxy for past local coastal upwelling in northern Chile. Quaternary International, 427, 128–136. https://doi.org/10.1016/j.quaint.2015. 11 .079
Levin, I., Hesshaimer, V. (2000). Radiocarbon – A unique tracer of global carbon cycle dynamics. Radiocarbon, 42(1), 69–80. https://doi.org/10.1017/s003382220005 3066
Liu, T. K. (1989). Radiometric dates of rocks and sediments from Penghu Islands and Lutao, and their implication of vertical crustal movement. Technical report, Energy & Resources Laboratories of Industrial Technology Research Institute.
Mangerud, J. A. N. (1972). Radiocarbon dating of marine shells, including a discussion of apparent age of recent shells from Norway. Boreas, 1(2), 143–172. https://doi.org/10.1111/j.1502-3885.1972.tb00147.x
Matsumoto, K., and R. Key (2004). Natural radiocarbon distribution in the deep ocean. Global Environmental Change in the Ocean and on Land, edited by M. Shiomi, H. Kawahata, H. Koizumi, A. Tsuda, and Y. Awaya, 45–58. Terra Science, Tokyo.
McConnaughey, T. (1989). 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53(1), 151–162. https://doi.org/10.1016/0016-7037(89)90282-2
McGregor, H. V., & Gagan, M. K. (2003). Diagenesis and geochemistry of Porites corals from Papua New Guinea. Geochimica Et Cosmochimica Acta, 67(12), 2147–2156. https://doi.org/10.1016/s0016-7037(02)01050-5
McGregor, H. V., Gagan, M. K., McCulloch, M. T., Hodge, E., & Mortimer, G. (2008). Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea. Quaternary Geochronology, 3(3), 213–225. https://doi.org/10.1016/j.quageo.2007.11.002
Mook, W. G., Rozanski, K., & Froelich, K. (2001). Environmental isotopes in the hydrological cycle: Principles and applications. UNESCO.
Muzikar, P., Elmore, D., & Granger, D. E. (2003). Accelerator mass spectrometry in geologic research. Geological Society of America Bulletin, 115, 643–654. https://doi.org/10.1130/0016-7606(2003)115<0643:amsigr>2.0.co;2
Ortlieb, L., Vargas, G., & Saliège, J.-F. (2011). Marine radiocarbon reservoir effect along the northern Chile–Southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research, 75(1), 91–103. https://doi.org/10.1016/j.yqres.2010.07.018
Rahman, M. A., Halfar, J., & Shinjo, R. (2013). X-ray diffraction is a promising tool to characterize coral skeletons. Advances in Materials Physics and Chemistry, 03(01), 120–125. https://doi.org/10.4236/ampc.2013.31a015
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The Intcal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kyr BP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/rdc.2020.41
Reimer, P. J., Hughen, K. A., Guilderson, T. P., McCormac, G., Baillie, M. G., Bard, E., Barratt, P., Warren Beck, J., Buck, C. E., Damon, P. E., Friedrich, M., Kromer, B., Bronk Ramsey, C., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., & VAN der Plicht, J. (2002). Preliminary report of the first workshop of the INTCAL04 radiocarbon calibration/comparison working group. Radiocarbon, 44(3), 653–661. https://doi.org/10.1017/s0033822200032100
Reimer, R. W., & Reimer, P. J. (2016). An online application for ΔR calculation. Radiocarbon, 59(5), 1623–1627. https://doi.org/10.1017/rdc.2016.117
Sayani, H. R., Cobb, K. M., Cohen, A. L., Elliott, W. C., Nurhati, I. S., Dunbar, R. B., Rose, K. A., & Zaunbrecher, L. K. (2011). Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals. Geochimica Et Cosmochimica Acta, 75(21), 6361–6373. https://doi.org/10.1016/j.gca.2011.08.026
Shen, C.-C., Li, K.-S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y.-T., Fan, T.-Y., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, H.-W., & Kilbourne, K. H. (2008). Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals. Geochimica Et Cosmochimica Acta, 72(17), 4201–4223. https://doi.org/10.1016/j.gca.2008.06.011
Shen, C.-C., Siringan, F. P., Lin, K., Dai, C.-F., & Gong, S.-Y. (2010). Sea-level rise and coral-reef development of northwestern Luzon since 9.9ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(3–4), 465–473. https://doi.org/10.1016/j.palaeo.2010.04.007
Soulet, G. (2015). Methods and codes for reservoir–atmosphere 14C age offset calculations. Quaternary Geochronology, 29, 97–103. https://doi.org/10.1016/j.quageo.2015.05.023
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., & W-S Yim, W. (2002). Marine Reservoir Corrections for the Indian Ocean and Southeast Asia. Radiocarbon, 44(1), 167–180. https://doi.org/10.1017/s0033822200064778
Stuiver, M., & Braziunas, T. F. (1993). Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon, 35(1), 137–189. https://doi.org/10.1017/s0033822200013874
Stuiver, M., Pearson, G. W., & Braziunas, T. (1986). Radiocarbon age calibration of marine samples back to 9000 cal YR BP. Radiocarbon, 28(2B), 980–1021. https://doi.org/10.1017/s0033822200060264
Stuiver, M., & Polach, H. A. (1977). Discussion reporting of 14C data. Radiocarbon, 19(3), 355–363. https://doi.org/10.1017/s0033822200003672
Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122(3166), 415–417. https://doi.org/10.1126/science.122.3166.415.b
Sun, D., Gagan, M. K., Cheng, H., Scott-Gagan, H., Dykoski, C. A., Edwards, R. L., & Su, R. (2005). Seasonal and interannual variability of the Mid-Holocene East Asian Monsoon in coral δ18O records from the South China Sea. Earth and Planetary Science Letters, 237(1–2), 69–84. https://doi.org/10.1016/j.epsl.2005.06.022
Sun, X. P., Su, Y. F., and Xiu, S. M. (1996). Current in the offshore areas east and west of Taiwan. Journal of Oceanography Huanghai & Bohai Seas, 14(2), 9–17
Tans, P. P., De Jong, A. F., & Mook, W. G. (1979). Natural atmospheric 14C variation and the Suess effect. Nature, 280(5725), 826–828. https://doi.org/10.1038/280826a0
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57–76. https://doi.org/10.1016/0040-1951(90)90188-e
Wan, J. X., Meltzner, A. J., Switzer, A. D., Lin, K., Wang, X., Bradley, S. L., Natawidjaja, D. H., Suwargadi, B. W., & Horton, B. P. (2020). Relative sea-level stability and the radiocarbon marine reservoir correction at Natuna Island, Indonesia, since 6400 yr BP. Marine Geology, 430, 106342. https://doi.org/10.1016/j.margeo.2020.106342
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., & Li, X. (2005). The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308(5723), 854–857. https://doi.org/10.1126/science.1106296
Wang, J. & Chern, C.S. (1992). On the distribution of bottom cold waters in Taiwan Strait during summertime. La mer, 30, 213–221.
Welch, B. L. (1947). The generalization of `Student’s’ problem when several different population variances are involved. Biometrika, 34(1/2), 28. https://doi.org/10.2307/2332510
Woodroffe, C. D., & Webster, J. M. (2014). Coral reefs and sea-level change. Marine Geology, 352, 248–267. https://doi.org/10.1016/j.margeo.2013.12.006
Wu, Y.-K., Han, G.-Y., & Lee, C.-Y. (2013). Planning 10 onshore wind farms with corresponding interconnection network and power system analysis for low-carbon-island development on Penghu Island, Taiwan. Renewable and Sustainable Energy Reviews, 19, 531–540. https://doi.org/10.1016/j.rser.2012.10.043
Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T., Suzuki, A., & Kawahata, H. (2007). Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1), 432–437. https://doi.org/10.1016/j.nimb.2007.01.184
Yu, K., Hua, Q., Zhao, J.-Xin, Hodge, E., Fink, D., & Barbetti, M. (2010). Holocene marine 14C reservoir age variability: Evidence from 230Th-dated corals in the South China Sea. Paleoceanography, 25(3). https://doi.org/10.1029/2009pa001831
Zong, Y. (2004). Mid-Holocene sea-level highstand along the southeast coast of China. Quaternary International, 117(1), 55–67. https://doi.org/10.1016/s1040-6182(03)00116-2
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90630-
dc.description.abstract碳-14定年法廣泛應用於地質、考古、海洋與古氣候等自然科學領域中。當利用此方法測定如珊瑚、貝殼或有孔蟲等海洋生物樣本時,由於大氣與海洋之間存在碳-14含量差異,因此需經過修正才可以取得較準確的年代,此修正值即為碳儲庫年齡。碳儲庫年齡源自於碳在大氣與海洋之間的緩慢交換,經海水混合、天水注入及硬水效應等多種海洋因素影響,使得碳儲庫年齡會隨著時空而發生變化。對於碳-14年代之修正,目前需仰賴Marine20所提供之全球碳儲庫年齡,並利用區域碳儲庫年齡之修正值∆R作為輔助,因而凸顯了區域碳儲庫年齡紀錄的重要性。過去在臺灣東岸及南方的呂宋島已有建立近代區域碳儲庫年齡數值,然而在臺灣西側之臺灣海峽中至今仍缺少碳儲庫年齡之數據,對於此區域碳儲庫年齡隨時間之變化亦缺乏較完整紀錄。因此,本研究採集來自於臺灣海峽中的澎湖之全新世珊瑚樣本,比對其碳-14與釷-230定年結果,計算出臺灣海峽中之碳儲庫年齡。
本研究年代範圍橫跨過去6700年,其中依據碳儲庫年齡數值特徵可分為兩時期,分別為自6.7至5.7 cal kyr BP之高變動期,平均值為407 ± 98 14C yr,與5.1至0 cal kyr BP之較穩定時期,平均值為352 ± 61 14C yr。本研究亦觀察到1.4與3.5 cal kyr BP為兩期低碳儲庫年齡時期,其數值最低可至220-230 14C yr。利用此紀錄中的變化特徵,本研究比對臺灣周遭和範圍較廣之南海、南太平洋等海域中之碳儲庫年齡紀錄,發現澎湖群島周圍海水於全新世之碳儲庫年齡變化趨勢與高低變化,皆與南海和南太平洋類似,但在4.0至2.5 cal kyr BP之間與南海略有差異。此趨勢指示臺灣海峽與南海之碳儲庫年齡主要受到太平洋的海洋環境演變之影響,且構成南海於4.0至2.5 cal kyr BP之間的高碳儲庫年齡的機制影響範圍侷限。最後本研究計算出臺灣海峽6700年以來之平均∆R值為 -146 ± 61 14C yr,可供臺灣周遭之海洋樣本碳-14定年校正時使用,以提升此區碳-14定年結果之準確度。
zh_TW
dc.description.abstractMarine radiocarbon reservoir age is a necessary correction for the 14C dating of marine samples such as corals, mollusks, and foraminifera. Reservoir age is caused by the long residence time of carbon in the marine reservoir, which causes a difference between marine 14C ages and contemporary terrestrial 14C ages that varies both temporally and spatially. Currently, global reservoir ages can be corrected using the Marine20 calibration curve. Local reservoir ages are accounted for through additional regional corrections known as ΔR. Although reservoir age variations in the Western Pacific and its marginal seas have been discussed in several previous studies, there is currently a lack of reservoir age data in the Taiwan Strait, an important waterway connecting the South China Sea and the East China Sea.
In this study, we presented a series of reservoir ages in the Taiwan Strait since 6.7 cal kyr BP. Reservoir ages were calculated using the paired 230Th and 14C ages of Holocene coral samples collected from the Penghu Islands. The record showed a period of higher and more variable reservoir ages from 6.7 to 5.7 cal kyr BP, with a mean value of 407 ± 98 14C yr, and a period of lower value and variability from 5.1 to 0 cal kyr BP, with a mean of 352 ± 61 14C yr. We also identified two periods of low reservoir ages with minimum values reaching 220-230 14C yr around 3.5 and 1.4 cal kyr BP. The evaluation of the local distribution of reservoir ages around Penghu and comparisons to reservoir ages reported from previous studies in the South China Sea and the South Equatorial Pacific showed good correlation of reservoir age trends. This indicated a strong influence of Pacific-sourced waters around the Penghu Islands and in the South China Sea. From differences between Penghu and the South China Sea records, we proposed that the high reservoir age variation observed in the South China Sea during 4.0 to 2.5 cal kyr BP is likely spatially restricted. Lastly, based on the results from the Penghu Islands, we determined that a mean ∆R value of -146 ± 61 14C yr is suitable for the calibration of marine 14C dates near Taiwan during the Holocene.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:56:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:56:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Radiocarbon Dating Calibration 4
2.1 Radiocarbon Dating and Atmospheric Calibration 4
2.2 Marine Radiocarbon Reservoir Age 9
2.3 Local Reservoir Age Variations and ΔR 15
Chapter 3 Previous Studies of Regional Reservoir Ages 17
3.1 Reservoir Age Studies Near Taiwan 19
3.2 Reservoir Age Studies from Oceans Further Away from Taiwan 22
3.2.1 Reservoir Age from the Western and Eastern South Pacific 23
3.2.2 Reservoir Age in the South China Sea 26
Chapter 4 Study Area 29
4.1 Marine Environment of the Taiwan Strait 29
4.2 Geological Background of Penghu 34
Chapter 5 Methods 36
5.1 Sampling 36
5.2 Effect of Diagenesis on Radiocarbon Dating 43
5.3 Coral Subsampling 47
5.4 Powder X-Ray Diffraction 52
5.5 Thorium-230 Dating 54
5.6 Radiocarbon Dating 57
5.7 Reservoir Age Calculation 59
Chapter 6 Results 62
6.1 XRD Results and Sample Condition 62
6.2 230Th Dating Results 68
6.3 14C Dating Results 73
6.4 Penghu Marine Reservoir Age 76
Chapter 7 Discussion 81
7.1 Characteristics of the Penghu Reservoir Age Record 82
7.2 δ13C and δ18O Characteristics of Holocene Penghu Corals 86
7.3 Temporal Variations of Reservoir Age around Penghu 90
7.3.1 Reservoir Age Variations from 1800 to 1950 CE (150-0 cal yr BP) 91
7.3.2 Reservoir Age Variations in the Holocene Compared with Records in the South China Sea and the Equatorial Pacific 95
7.4 ΔR Values of the Taiwan Strait 99
Chapter 8 Conclusions 102
REFERENCES 104
APPENDIX 1: Coral Sample Photographs 116
APPENDIX 2: Rietveld Refinement Results 142
APPENDIX 3: 14C Dating Reports 237
-
dc.language.isoen-
dc.title澎湖的全新世海洋碳儲庫年齡紀錄zh_TW
dc.titleHolocene marine radiocarbon reservoir age variation on the Penghu Islandsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor王興麟zh_TW
dc.contributor.coadvisorShing-Lin Wangen
dc.contributor.oralexamcommittee林慧玲;沈川洲;王士偉zh_TW
dc.contributor.oralexamcommitteeHui-Ling Lin;Chuan-Chou Shen;Shih-Wei Wangen
dc.subject.keyword碳儲庫年齡,澎湖,碳-14定年,釷-230定年,珊瑚,zh_TW
dc.subject.keywordradiocarbon reservoir age,Penghu,14C dating,230Th dating,coral,en
dc.relation.page282-
dc.identifier.doi10.6342/NTU202303407-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2026-08-11-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
40.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved