Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90628
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林沛群zh_TW
dc.contributor.advisorPei-Chun Linen
dc.contributor.author陳冠綸zh_TW
dc.contributor.authorGuan-Lun Chenen
dc.date.accessioned2023-10-03T16:55:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation[1] N. Ben Fredj and R. Amamou, "Ground surface roughness prediction based upon experimental design and neural network models," International Journal of Advanced Manufacturing Technology, vol. 31, no. 1-2, pp. 24-36, Nov 2006, doi: 10.1007/s00170-005-0169-8.
[2] F. J. Shiou and C. C. Hsu, "Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre," Journal of Materials Processing Technology, vol. 205, no. 1-3, pp. 249-258, Aug 2008, doi: 10.1016/j.jmatprotec.2007.11.244.
[3] Y. Sun, D. Zuo, Y. Zhu, and J. Li, "Using taguchi method to optimize polishing parameters in ice fixed abrasive polishing," Materials and Manufacturing Processes, Article vol. 28, no. 8, pp. 923-927, 2013, doi: 10.1080/10426914.2013.792419.
[4] T. Zhao, Y. Shi, X. Lin, J. Duan, P. Sun, and J. Zhang, "Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine," The International Journal of Advanced Manufacturing Technology, vol. 74, no. 5, pp. 653-663, 2014.
[5] A. E. Khalick Mohammad, J. Hong, and D. Wang, "Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm," The International Journal of Advanced Manufacturing Technology, vol. 93, no. 1, pp. 1463-1471, 2017.
[6] R. Pan, B. Zhong, Z. Z. Wang, S. T. Ji, D. J. Chen, and J. W. Fan, "Influencing mechanism of the key parameters during bonnet polishing process," International Journal of Advanced Manufacturing Technology, vol. 94, no. 1-4, pp. 643-653, Jan 2018, doi: 10.1007/s00170-017-0870-4.
[7] Z. Chen et al., "Analysis and optimization of process parameter intervals for surface quality in polishing Ti-6Al-4V blisk blade," Results in Physics, Article vol. 12, pp. 870-877, 2019, doi: 10.1016/j.rinp.2018.12.056.
[8] X. Tong et al., "Mechanism and parameter optimization in grinding and polishing of M300 steel by an elastic abrasive," Materials, vol. 12, no. 3, p. 340, 2019.
[9] F. Li, Y. Xue, Z. Zhang, W. Song, and J. Xiang, "Optimization of grinding parameters for the workpiece surface and material removal rate in the belt grinding process for polishing and deburring of 45 steel," Applied Sciences, vol. 10, no. 18, p. 6314, 2020.
[10] Q. Zheng, J. Xiao, C. Wang, H. Liu, and T. Huang, "A robotic polishing parameter optimization method considering time-varying wear," International Journal of Advanced Manufacturing Technology, Article vol. 121, no. 9-10, pp. 6723-6738, 2022, doi: 10.1007/s00170-022-09788-8.
[11] F. Guo et al., "Polishing parameter optimization for end-surface of chalcogenide glass fiber connector," Optical Fiber Technology, Article vol. 38, pp. 41-45, 2017, doi: 10.1016/j.yofte.2017.07.004.
[12] Z. Tao, S. Yaoyao, L. Xiaojun, and H. Tianran, "Optimization of abrasive flow polishing process parameters for static blade ring based on response surface methodology," Journal of Mechanical Science and Technology, Article vol. 30, no. 3, pp. 1085-1093, 2016, doi: 10.1007/s12206-016-0213-7.
[13] X. Ming, Q. Gao, H. Yan, J. Liu, and C. Liao, "Mathematical modeling and machining parameter optimization for the surface roughness of face gear grinding," International Journal of Advanced Manufacturing Technology, Article vol. 90, no. 9-12, pp. 2453-2460, 2017, doi: 10.1007/s00170-016-9576-2.
[14] Y. Zhang, B. Li, J. Yang, and S. Liang, "Modeling and optimization of alloy steel 20CrMnTi grinding process parameters based on experiment investigation," International Journal of Advanced Manufacturing Technology, Article vol. 95, no. 5-8, pp. 1859-1873, 2018, doi: 10.1007/s00170-017-1335-5.
[15] C. J. Lin, J. Y. Jhang, and K. Y. Young, "Parameter selection and optimization of an intelligent ultrasonic-assisted grinding system for SiC ceramics," IEEE Access, Article vol. 8, pp. 195721-195732, 2020, doi: 10.1109/ACCESS.2020.3033884.
[16] P. Zhang, Z. Li, L. Zou, and Q. Tang, "Optimization of grinding process parameters based on BILSTM network and chaos sparrow search algorithm," Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Article vol. 236, no. 4, pp. 1693-1701, 2022, doi: 10.1177/09544089221074832.
[17] P. Asokan, N. Baskar, K. Babu, G. Prabhaharan, and R. Saravanan, "Optimization of surface grinding operations using particle swarm optimization technique," Journal of Manufacturing Science and Engineering-Transactions of the Asme, vol. 127, no. 4, pp. 885-892, Nov 2005, doi: 10.1115/1.2037085.
[18] J. Guo, "Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding," The International Journal of Advanced Manufacturing Technology, vol. 75, pp. 1245-1252, 2014.
[19] D. Lipiński, B. Bałasz, and Ł. Rypina, "Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generalisation," The International Journal of Advanced Manufacturing Technology, vol. 94, pp. 1335-1347, 2018.
[20] S. Agarwal and P. V. Rao, "Modeling and prediction of surface roughness in ceramic grinding," International Journal of Machine Tools and Manufacture, vol. 50, no. 12, pp. 1065-1076, 2010.
[21] S. Kumar and S. Choudhury, "Prediction of wear and surface roughness in electro-discharge diamond grinding," Journal of Materials Processing Technology, vol. 191, no. 1-3, pp. 206-209, 2007.
[22] C. Prakasvudhisarn, S. Kunnapapdeelert, and P. Yenradee, "Optimal cutting condition determination for desired surface roughness in end milling," The International Journal of Advanced Manufacturing Technology, vol. 41, pp. 440-451, 2009.
[23] Q. Wang, F. Liu, and X. Wang, "Multi-objective optimization of machining parameters considering energy consumption," The International Journal of Advanced Manufacturing Technology, vol. 71, pp. 1133-1142, 2014.
[24] S.-P. Lo, "An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling," Journal of Materials Processing Technology, vol. 142, no. 3, pp. 665-675, 2003.
[25] Z. Yao, C. Fan, Z. Zhang, D. Zhang, and M. Luo, "Position-varying surface roughness prediction method considering compensated acceleration in milling of thin-walled workpiece," Frontiers of Mechanical Engineering, pp. 1-13, 2021.
[26] R. V. Rao and V. D. Kalyankar, "Multi-pass turning process parameter optimization using teaching-learning-based optimization algorithm," Scientia Iranica, vol. 20, no. 3, pp. 967-974, Jun 2013, doi: 10.1016/j.scient.2013.01.002.
[27] D. R. Salgado, F. Alonso, I. Cambero, and A. Marcelo, "In-process surface roughness prediction system using cutting vibrations in turning," The International Journal of Advanced Manufacturing Technology, vol. 43, pp. 40-51, 2009.
[28] K. V. Rao, B. Murthy, and N. M. Rao, "Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network," Measurement, vol. 51, pp. 63-70, 2014.
[29] T. Wu and K. Lei, "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network," The International Journal of Advanced Manufacturing Technology, vol. 102, no. 1-4, pp. 305-314, 2019.
[30] W. Guo, C. Wu, Z. Ding, and Q. Zhou, "Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding," The International Journal of Advanced Manufacturing Technology, vol. 112, pp. 2853-2871, 2021.
[31] 賴景裕, "以研磨力和數據模型建構研磨工件表面粗糙度估測," 機械工程學系, 國立臺灣大學, 2022.
[32] 劉民偉, "自動化拋光研磨系統之路徑生成、表面瑕疵檢測及回拋回磨修補," 機械工程學系, 國立臺灣大學, 2021.
[33] 林郁衡, "高動態多控制模式研磨工具開發," 機械工程學系, 國立臺灣大學, 2021.
[34] 陳予和, "工業回授控制系統受攻異常的偵測," 機械工程學系, 國立臺灣大學, 2022.
[35] N. I. CORP. "NI myRIO Hardware at a Glance." https://www.ni.com/en-us/support/documentation/supplemental/13/ni-myrio-hardware-at-a-glance.html (accessed July 8, 2023).
[36] maxon. "MOTOR EC 60 flat Ø60 mm, brushless, 200 W, with Hall sensors SENSOR Encoder MILE, 512 cpt, 2-channel, with line driver." https://www.maxongroup.us/maxon/view/service_search?query=723246 (accessed July 8, 2023).
[37] Moticont. "Hollow Core Linear Voice Coil Motors, HVCM-095-038-051-01." https://www.moticont.com/HVCM-095-038-051-01.htm (accessed July 8, 2023).
[38] C. Motion. "Linear Encoders." https://www.celeramotion.com/microe/products/linear-encoders/ (accessed July 8, 2023).
[39] S. Instruments. "M37XX: 6 Axis F/T Load Cell For General Testing." https://www.srisensor.com/m37xx-series-6-axis-ft-sensor-for-robot-general-testing-product/ (accessed July 8, 2023).
[40] S. Instruments. "Data Acquisition Interface Box M812X." https://www.srisensor.com/data-acquisition-interface-box-m812x-product/ (accessed July 8, 2023).
[41] T. R. INC. "TM14." https://www.tm-robot.com/en/tm14/ (accessed July 8, 2023).
[42] T. R. INC. "TM ROS Driver." https://github.com/TechmanRobotInc/tmr_ros1 (accessed July 8, 2023).
[43] M. Quigley et al., "ROS: an open-source Robot Operating System," in ICRA workshop on open source software, 2009, vol. 3, no. 3.2: Kobe, Japan, p. 5.
[44] D. Coleman, I. Sucan, S. Chitta, and N. Correll, "Reducing the barrier to entry of complex robotic software: a moveit! case study," arXiv preprint arXiv:1404.3785, 2014.
[45] 3M. "3M 砂紙和砂輪." https://www.3m.com.tw/3M/zh_TW/p/c/abrasives/sheets-rolls/ (accessed July 9, 2023).
[46] M. A. Corporation. "SJ-210 – Portable Surface Roughness Tester." https://www.mitutoyo.com/products/form-measurement-machine/surface-roughness/sj-210-portable-surface-roughness-tester-2/ (accessed July 9, 2023).
[47] G. E. P. Box and K. B. Wilson, "ON THE EXPERIMENTAL ATTAINMENT OF OPTIMUM CONDITIONS," Journal of the Royal Statistical Society Series B-Statistical Methodology, vol. 13, no. 1, pp. 1-45, 1951, doi: 10.1111/j.2517-6161.1951.tb00067.x.
[48] I. The MathWorks. "Response Surface Designs." https://www.mathworks.com/help/stats/response-surface-designs.html (accessed July 11, 2023).
[49] C. D. Lewis, "Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting," (No Title), 1982.
[50] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proceedings of the fifth annual workshop on Computational learning theory, 1992, pp. 144-152.
[51] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, pp. 273-297, 1995.
[52] N. Segata and E. Blanzieri, "Fast and Scalable Local Kernel Machines," Journal of Machine Learning Research, vol. 11, pp. 1883-1926, Jun 2010. [Online]. Available: <Go to ISI>://WOS:000282522400005.
[53] C. C. Chang and C. J. Lin, "LIBSVM: A Library for Support Vector Machines," Acm Transactions on Intelligent Systems and Technology, vol. 2, no. 3, 2011, Art no. 27, doi: 10.1145/1961189.1961199.
[54] D. F. Specht, "A GENERAL REGRESSION NEURAL NETWORK," Ieee Transactions on Neural Networks, vol. 2, no. 6, pp. 568-576, Nov 1991, doi: 10.1109/72.97934.
[55] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in International conference on machine learning, 2015: pmlr, pp. 448-456.
[56] D. H. Wolpert, "Stacked generalization," Neural networks, vol. 5, no. 2, pp. 241-259, 1992.
[57] H.-T. Lin. "Machine Learning Foundations/Techniques, Fall 2020." https://www.csie.ntu.edu.tw/~htlin/course/ml20fall/ (accessed July 12, 2023).
[58] 王右勛, "自動化研磨系統之視覺檢測方法與研磨接觸力估測模型," 機械工程學系, 國立臺灣大學, 2021.
[59] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4: IEEE, pp. 1942-1948.
[60] F. Marini and B. Walczak, "Particle swarm optimization (PSO). A tutorial," Chemometrics and Intelligent Laboratory Systems, vol. 149, pp. 153-165, Dec 2015, doi: 10.1016/j.chemolab.2015.08.020.
[61] D. Ackley, A connectionist machine for genetic hillclimbing. Springer science & business media, 2012.
[62] T. E. ToolBox. "Grit Size vs. Surface Roughness." https://www.engineeringtoolbox.com/grit-size-surface-roughness-d_2096.html (accessed July 15, 2023).
[63] M. A. Corporation. "SJ-410 – Portable Surface Roughness Tester." https://www.mitutoyo.com/products/form-measurement-machine/surface-roughness/sj-410-portable-surface-roughness-tester/ (accessed July 9, 2023).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90628-
dc.description.abstract本研究使用機械手臂進行自動化研磨加工,而為了提升工件的研磨品質,針對不同的研磨參數進行最佳化,選用的研磨參數包括砂紙號數、研磨力、研磨輪轉速、進給速度以及研磨角度,本研究進行研磨參數最佳化主要可分為兩大部分:模型訓練與最佳化參數,首先利用機器學習方法建立表面粗糙度模型,再利用預測模型進行最佳化參數。
由於研磨過程與測量表面粗糙度需耗費大量時間,本研究訓練模型所使用的資料是利用中央合成設計(central composite design)進行蒐集,相較於全因子實驗能夠使用較少的實驗組數蒐集到訓練資料,而研究中選用了線性模型、支持向量機(support vector machine)、神經網路(neural network)分別進行訓練,利用驗證資料集作為訓練超參數的挑選,再使用測試資料集檢驗模型表現,最後再將模型組合成堆疊(Stacking)模型,使預測結果再進一步提升。
訓練後的模型會套用於粒子群最佳化(Particle Swarm Optimization, PSO)演算法進行研磨參數最佳化,分別使用了支持向量機、神經網路與堆疊模型生成了不同砂紙號數下的最佳化研磨參數,接著再透過實驗驗證其效果,驗證實驗除了使用與訓練資料中相同的黃銅片工件,另外也使用了曲面的黃銅棒進行研磨,最終使用最佳化參數所得到的研磨結果皆比未使用的更好,其中240號砂紙使用支持向量機模型的最佳化參數所得到的表面粗糙度最小,400號砂紙則是神經網路模型,800號砂紙則是堆疊模型,將這些參數應用於黃銅棒上同樣也得到比未使用最佳化參數更小的表面粗糙度,以此驗證了預測模型的準確度以及最佳化演算法的效果。
zh_TW
dc.description.abstractIn this research, an automated grinding process using a robotic arm was employed to enhance the grinding quality of workpieces. The optimization of grinding parameters, including grit size, grinding force, wheel speed, feed rate, and grinding angle, was conducted to achieve optimal results. The optimization process can be divided into two main parts: model training and parameter optimization. Initially, a surface roughness model was developed using machine learning techniques, followed by the parameter optimization with the prediction models.
Due to the time-consuming nature of grinding and surface roughness measurements, the central composite design was utilized to collect training data with fewer experimental runs compared to the full factorial design. Linear model, support vector machine (SVM), and neural network were trained using the collected data. The selection of training hyperparameters was based on the validation dataset, and the performance of the models was evaluated using the testing dataset. Finally, the models were combined into a stacking model to further improve the prediction accuracy.
The trained models were then applied to the particle swarm optimization (PSO) algorithm for grinding parameter optimization. The support vector machine (SVM), neural network, and stacking model are utilized to generate the optimized grinding parameters for different grit sizes. The optimized parameters were experimentally validated using brass specimens, including flat plates and curved rods. The results demonstrated that the surface roughness obtained with the optimized parameters was superior to the non-optimized parameters. The SVM model yielded the lowest surface roughness for the 240-grit size, the neural network model for the 400-grit size, and the stacking model for the 800-grit size. The application of the optimized parameters to the curved brass rods also resulted in improved surface roughness compared to non-optimized parameters, validating the accuracy of the prediction models and the effectiveness of the optimization algorithm.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:55:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:55:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT vi
目錄 viii
圖目錄 xii
表目錄 xv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 貢獻 10
1.5 論文架構 11
第二章 平台架構 12
2.1 前言 12
2.2 研磨工具 12
2.3 機械手臂 18
2.4 ROS 20
2.4.1 ROS 介紹 20
2.4.2 機械手臂通訊 21
2.4.3 機械手臂控制 22
2.5 功能實作 25
2.5.1 座標系校正 25
2.5.2 手臂軌跡生成 27
第三章 表面粗糙度資料蒐集 29
3.1 前言 29
3.2 實驗配置 29
3.2.1 工件與夾具 30
3.2.2 研磨輪 31
3.2.3 量測儀器 32
3.3 研磨參數介紹 34
3.3.1 砂紙號數 34
3.3.2 研磨力 35
3.3.3 研磨輪轉速 35
3.3.4 進給速度 36
3.3.5 研磨角度 36
3.4 實驗設計 37
3.4.1 實驗因子與水準 37
3.4.2 中央合成設計 38
3.5 表面粗糙度量測 41
第四章 表面粗糙度預測模型 43
4.1 前言 43
4.2 資料前處理 43
4.2.1 特徵擷取 43
4.2.2 特徵標準化 49
4.3 模型訓練 50
4.3.1 線性迴歸模型 52
4.3.2 支持向量機模型 54
4.3.3 神經網路模型 61
4.4 堆疊(Stacking)模型 67
4.4.1 模型介紹 67
4.4.2 模型結果 69
4.5 本章小結 70
第五章 最佳化研磨參數 72
5.1 前言 72
5.2 粒子群最佳化 72
5.2.1 演算法介紹 72
5.2.2 最佳化結果 76
5.3 最佳化參數實驗 78
5.3.1 最佳化參數驗證 78
5.3.2 研磨曲面實驗 83
第六章 結論與未來展望 90
6.1 結論 90
6.2 未來展望 91
參考文獻 92
-
dc.language.isozh_TW-
dc.subject表面粗糙度預測zh_TW
dc.subject線性迴歸zh_TW
dc.subject支持向量機zh_TW
dc.subject神經網路zh_TW
dc.subject粒子群最佳化zh_TW
dc.subject參數最佳化zh_TW
dc.subject研磨zh_TW
dc.subjectparticle swarm optimizationen
dc.subjectgrindingen
dc.subjectparameter optimizationen
dc.subjectsurface roughness predictionen
dc.subjectlinear regressionen
dc.subjectsupport vector machineen
dc.subjectneural networken
dc.title研磨參數最佳化與以其在線數據預測工件表面粗糙度zh_TW
dc.titleGrinding Parameters Optimization and Workpiece Surface Roughness Prediction Using Online Process Dataen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee連豊力;顏炳郎zh_TW
dc.contributor.oralexamcommitteeFeng-Li Lian;Ping-Lang Yenen
dc.subject.keyword研磨,參數最佳化,表面粗糙度預測,線性迴歸,支持向量機,神經網路,粒子群最佳化,zh_TW
dc.subject.keywordgrinding,parameter optimization,surface roughness prediction,linear regression,support vector machine,neural network,particle swarm optimization,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202303402-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
3.79 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved