Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90620
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳亮嘉zh_TW
dc.contributor.advisorLiang-Chia Chenen
dc.contributor.author周煜峰zh_TW
dc.contributor.authorYu-Feng Chouen
dc.date.accessioned2023-10-03T16:53:37Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-14-
dc.identifier.citation1. Marvin, Minsky, Microscopy apparatus. Patent US3013467 A, 1961.
2. Maurice, David M, A scanning slit optical microscope. Investigative Ophthalmology & Visual Science, 1974. 13(12): p. 1033-1037.
3. Amos, WB and JG White, How the confocal laser scanning microscope entered biological research. Biology of the Cell, 2003. 95(6): p. 335-342.
4. White, JG, Confocal scanning microscope. UK Patent Application, 1987. 2: p. 184.
5. Paddock, Stephen W, Principles and practices of laser scanning confocal microscopy. Molecular biotechnology, 2000. 16: p. 127-149.
6. Petráň, Mojmír, Milan Hadravský, M David Egger, and ROBERT Galambos, Tandem-scanning reflected-light microscope. JOSA, 1968. 58(5): p. 661-664.
7. Xiao, GQ, To R Corle, and GS Kino, Real‐time confocal scanning optical microscope. Applied physics letters, 1988. 53(8): p. 716-718.
8. Tanaami, Takeo, Shinya Otsuki, Nobuhiro Tomosada, Yasuhito Kosugi, Mizuho Shimizu, and Hideyuki Ishida, High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Applied optics, 2002. 41(22): p. 4704-4708.
9. Wang, Qingqing, Jihong Zheng, Kangni Wang, Kun Gui, Hanming Guo, and Songlin Zhuang, Parallel detection experiment of fluorescence confocal microscopy using DMD. Scanning, 2016. 38(3): p. 234-239.
10. Chang, Ting-Jui and Guo-Dung J Su. A confocal microscope with programmable aperture arrays by polymer–dispersed liquid crystal. in Novel Optical Systems Design and Optimization XX. 2017. SPIE.
11. Wang, Hongda, Yair Rivenson, Yiyin Jin, Zhensong Wei, Ronald Gao, Harun Günaydın, Laurent A Bentolila, Comert Kural, and Aydogan Ozcan, Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nature methods, 2019. 16(1): p. 103-110.
12. Huang, Boyi, Jia Li, Bowen Yao, Zhigang Yang, Edmund Y Lam, Jia Zhang, Wei Yan, and Junle Qu, Enhancing image resolution of confocal fluorescence microscopy with deep learning. PhotoniX, 2023. 4(1): p. 1-22.
13. Molesini, G, G Pedrini, Pasquale Poggi, and Franco Quercioli, Focus-wavelength encoded optical profilometer. Optics communications, 1984. 49(4): p. 229-233.
14. Browne, MA, O Akinyemi, and Alan Boyde, Confocal surface profiling utilizing chromatic aberration. Scanning, 1992. 14(3): p. 145-153.
15. Zhuo, Guan-Yu, Chia-Huan Hsu, Yen-Hsiang Wang, and Ming-Che Chan, Chromatic confocal microscopy to rapidly reveal nanoscale surface/interface topography by position-sensitive detection. Applied physics letters, 2018. 113(8): p. 083106.
16. Hu, Hao, Shuang Mei, Liming Fan, and Huigang Wang, A line-scanning chromatic confocal sensor for three-dimensional profile measurement on highly reflective materials. Review of Scientific Instruments, 2021. 92(5): p. 053707.
17. Tiziani, Hans J and H-M Uhde, Three-dimensional image sensing by chromatic confocal microscopy. Applied optics, 1994. 33(10): p. 1838-1843.
18. Ruprecht, Aiko K, Klaus Koerner, Tobias F Wiesendanger, Hans J Tiziani, and Wolfgang Osten. Chromatic confocal detection for high-speed microtopography measurements. in Three-Dimensional Image Capture and Applications VI. 2004. SPIE.
19. Cha, Sungdo, Paul C Lin, Lijun Zhu, Elliott L Botvinick, Pang Chen Sun, and Yeshaiahu Fainman. 3D profilometry using a dynamically configurable confocal microscope. in Three-Dimensional Image Capture and Applications II. 1999. SPIE.
20. Li, Shaobai and Rongguang Liang, DMD-based three-dimensional chromatic confocal microscopy. Applied optics, 2020. 59(14): p. 4349-4356.
21. Luo, Ding, Miro Taphanel, Daniel Claus, Tobias Boettcher, Wolfgang Osten, Thomas Längle, and Jürgen Beyerer, Area scanning method for 3D surface profilometry based on an adaptive confocal microscope. Optics and Lasers in Engineering, 2020. 124: p. 105819.
22. Yu, Qing, Yali Zhang, Yi Zhang, Fang Cheng, Wenjian Shang, and Yin Wang, A novel chromatic confocal one-shot 3D measurement system based on DMD. Measurement, 2021. 186: p. 110140.
23. Cui, Qi and Rongguang Liang, Chromatic confocal microscopy using liquid crystal display panels. Applied optics, 2019. 58(8): p. 2085-2090.
24. Prause, Korbinian, Alois Herkommer, Bernd R Pinzer, and Michael Layh, Single-shot high speed aerial chromatic confocal metrology sensor. Optical Engineering, 2021. 60(12): p. 124110-124110.
25. Sato, Ryo, Chong Chen, Hiraku Matsukuma, Yuki Shimizu, and Wei Gao, A new signal processing method for a differential chromatic confocal probe with a mode-locked femtosecond laser. Measurement Science and Technology, 2020. 31(9): p. 094004.
26. Lu, Wenlong, Cheng Chen, Jian Wang, Richard Leach, Chi Zhang, Xiaojun Liu, Zili Lei, Wenjun Yang, and Xiangqian Jane Jiang, Characterization of the displacement response in chromatic confocal microscopy with a hybrid radial basis function network. Optics express, 2019. 27(16): p. 22737-22752.
27. Wilson, Tony and Colin Sheppard, Theory and practice of scanning optical microscopy. Vol. 180. 1984: Academic press London.
28. Sheppard, CJR, Confocal microscopy: Principles, practice and options. 1999: Academic Press, London, UK.
29. Wilson, Tony, Confocal microscopy. Vol. 426. 1990: Academic press London.
30. Wilson, Tony, Resolution and optical sectioning in the confocal microscope. Journal of microscopy, 2011. 244(2): p. 113-121.
31. Wilson, Tony and AR Carlini, Size of the detector in confocal imaging systems. Optics letters, 1987. 12(4): p. 227-229.
32. Sheppard, Colin JR, Scanning confocal microscopy. Encyclopedia of Optical Engineering, 2003: p. 2525-2544.
33. Bitte, Frank, Gerd Dussler, and Tilo Pfeifer, 3D micro-inspection goes DMD. Optics and lasers in engineering, 2001. 36(2): p. 155-167.
34. Rahlves, Maik, Bernhard Roth, and Eduard Reithmeier, Confocal signal evaluation algorithms for surface metrology: uncertainty and numerical efficiency. Applied Optics, 2017. 56(21): p. 5920-5926.
35. Bai, Jiao, Xinghui Li, Xiaohao Wang, Qian Zhou, and Kai Ni, Chromatic confocal displacement sensor with optimized dispersion probe and modified centroid peak extraction algorithm. Sensors, 2019. 19(16): p. 3592.
36. Caruana, Richard A, Roger B Searle, Thomas Heller, and Saul I Shupack, Fast algorithm for the resolution of spectra. Analytical chemistry, 1986. 58(6): p. 1162-1167.
37. Hillenbrand, Matthias, Adrian Grewe, Mohamed Bichra, Roman Kleindienst, Lucia Lorenz, Raoul Kirner, Robert Weiß, and Stefan Sinzinger. Parallelized chromatic confocal sensor systems. in Optical Measurement Systems for Industrial Inspection VIII. 2013. SPIE.
38. IBSEN. Spectrometer design guide. Available from: https://ibsen.com/resources/spectrometer-resources/spectrometer-design-guide/.
39. Zemax. How to build a spectrometer - theory. 2021; Available from: https://support.zemax.com/hc/en-us/articles/1500005578762-How-to-build-a-spectrometer-theory.
40. Van Luan, Dinh, Nguyen Xuan Truong, Hyun Kim, and Hyuk-Jae Lee. Implementation of the XY2-100 protocol on low-cost microcontroller. in 2017 International SoC Design Conference (ISOCC). 2017. IEEE.
41. Newport. Fiber Optic Basics. Available from: https://www.newport.com/t/fiber-optic-basics.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90620-
dc.description.abstract隨著半導體產業的日漸發展,目前產業製程已經邁入了晶圓級封裝,這無疑會使得關鍵尺寸量測上面臨前所未有的挑戰。目前產業主流的量測方法為雷射三角法,但因雷射三角法其本身的遮蔽效應,使其在量測緊密排列的微凸結構甚至是高深寬比的深孔時會顯得相對劣勢,然而在如今的產業發展下,這些微結構已然成為現今先進封裝製程中常見的結構,因此,具備同軸量測的檢測技術勢必將成為半導體量測之必要元素。目前具備同軸架構且高精度之彩色共焦顯微術將具有相當高之發展潛能。
為達到半導體製成所需之高速且高解析能力的量測需求,本研究將以多點振鏡掃描式的彩色共焦量測方法為核心主軸。本研究的關鍵技術主要可列成下列三點,首先,有鑑於先前提出以數位微鏡裝置(DMD)或是液晶面板(LCoS)來做數位空間濾波器的彩色共焦顯微術方法其光效率低落,而其主要原因在於為保持共焦之特性,在使用以上空間濾波器時,無法同時讓所有光線進入系統中,因此為了提升整體系統的光效率,本團隊將會以微透鏡陣列(Microlens Array)來聚焦成多點的架構來進行整體系統的設計,以確保所有聚焦光能同時進入系統中。二,為了達到全域的量測,本研究使用光學掃描透鏡搭配二維振鏡,以達到精準且快速量測。此方法主要的優勢在於,可完全避免系統與樣品間的相對移動,移除平台移動時所產生的震動且減少位移導致的體積誤差,且振鏡本身在小角度旋轉的響應時間也較為快速,可進一步提升系統量測速度。三,本研究在偵測端特別開發出二維轉換成線性架構的光纖陣列,其主要用途為改進先前技術中,光譜解析能力受限於兩點間的距離之問題,進而增加量測解析能力。相較於現有的彩色共焦顯微術,本研究具備了高速量測的能力同時也維持住高解析能力,若與線型的彩色共焦技術相比,本研究同時還避免了橫向解析能力下降的問題。
目前本研究在量測平面鏡時,在經過影像重建後,其最大誤差為400 nm,而造成此誤差的原因為光纖轉換陣列在編排上並非為理想的線性架構。為進一步探討系統的量測精度,之後便對50 µm的階高進行量測,系統量測到的結果為53.72 µm與商用雷射共焦儀的結果相比,其偏差量為2.33 µm。之後再量測微凸塊陣列,其量測高度為28.37 µm,與Keyence量測結果相比,其偏差量為6.07 µm。造成上述偏差量較大的原因為,樣品載台與系統間有傾斜角,導致量測精度因阿貝誤差而降低。
zh_TW
dc.description.abstractWith the continuous development of the semiconductor industry, the manufacturing process has entered the wafer-level packaging, which undoubtedly poses unprecedented challenges for critical dimension measurement. The current mainstream measurement method in the industry is the laser triangulation method, but due to the occlusion effect of the laser triangulation method, it is relatively disadvantaged in measuring closely arranged micro-convex structures or deep holes with high aspect ratios. However, in today's industry development, these microstructures have become common structures in advanced packaging processes, and therefore, detection technology with coaxial measurement will inevitably become a necessary element of semiconductor measurement. Currently, the high-precision color confocal microscopy with coaxial structure will have considerable potential for development.
To meet the high-speed and high-resolution measurement requirements for semiconductor manufacturing, this study will focus on the multi-point scanning color confocal measurement method as the core. The key technologies of this study can be listed as follows. Firstly, in view of the previously proposed color confocal microscopy methods using digital microscopes (DMD) or liquid crystal panels (LCoS) to make digital spatial filters, their optical efficiency is low. The main reason is that in order to maintain the characteristic of confocal, not all rays can enter the system when using the above spatial filters. Therefore, to improve the overall system's optical efficiency, the team will design the system using a microlens array to focus into a multi-point structure to ensure that all focused light can enter the system simultaneously. Secondly, in order to achieve global measurement, this study uses a pair of the optical scan lens with a two-dimensional galvanometer to achieve precise and rapid measurements. The main advantage of this method is that it completely avoids relative movement between the system and the sample, removes the vibration generated by platform movement, reduces volume errors caused by displacement, and the response time of the mirror itself to small angle rotation is also faster, further improving the system measurement speed. In addition, this study has developed a two-dimensional fiber array that can be converted into a linear structure at the detection end, which is mainly used to improve the spectral analysis ability that was previously limited by the distance between two points, thereby increasing the measurement resolution. Compared to existing confocal microscopy, this study not only has the ability to perform high-speed measurements but also maintains high resolution. In comparison with linear confocal technology, this research also avoids the issue of decreased lateral resolution capability simultaneously.
Currently, in this study, when measuring flat mirrors, the maximum error after image reconstruction is 400 nm. The cause of this error is that the arrangement of the fiber conversion array is not an ideal linear structure. To further investigate the measurement accuracy of the system, subsequent measurements were conducted on step heights of 50 µm. When comparing the results obtained by the system to those of a commercial confocal laser microscope, the measurement results is53.72 µm and the deviation was found to be 2.33 µm. Subsequently, measurements were taken on a micro-bump array with a height of 28.37 µm. When compared to Keyence measurement results, the deviation amounted to 6.07 µm. The primary reason for the larger discrepancies mentioned above is the presence of an inclination angle between the sample stage and the system, leading to a reduction in measurement accuracy due to Abbé error.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:53:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:53:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents第 1 章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究創新性 4
1.4 論文架構 4
第 2 章 文獻回顧 6
2.1 單色共焦顯微術 6
2.2 彩色共焦顯微術 11
2.3 總結 20
第 3 章 系統量測原理 23
3.1 光學基本原理 23
3.1.1 點擴散函數(Point Spread Function, PSF) 23
3.1.2 橫向解析能力 24
3.2 單色共焦顯微術 24
3.2.1 量測原理 24
3.2.2 深度響應曲線(depth response curve) 26
3.2.3 影響深度響應曲線之參數 27
3.3 彩色共焦顯微術 29
3.3.1 量測原理 29
3.3.2 色散原理 30
3.3.3 感測原理 31
3.4 光束掃描原理 33
3.5 波長峰值偵測 34
3.5.1 重心法 34
3.5.2 高斯擬合法 35
3.6 空間轉換陣列 36
3.7 系統原理與設計總結 37
第 4 章 系統設計之架構 39
4.1 系統架構 39
4.2 照明模組 40
4.2.1 光源及光纖導管 41
4.2.2 微透鏡陣列與針孔陣列 44
4.2.3 照明模組設計與分析 46
4.3 掃描模組 48
4.3.1 色散物鏡 49
4.3.2 F-θ掃描透鏡 56
4.3.3 雙軸光學掃描振鏡 60
4.3.4 掃描模組設計與分析 61
4.4 偵測模組 62
4.4.1 光纖轉換陣列 62
4.4.2 攝譜儀 63
4.4.3 感測器 64
4.4.4 感測模組之光學模擬 65
4.5 系統整合 68
4.5.1 光機探頭整合 68
4.5.2 軟硬體控制 70
4.6 系統校正 71
4.6.1 深度校正 71
4.6.2 光纖位置補償與排序 74
第 5 章 系統表現與結果分析 75
5.1 相機峰值偵測法驗證 75
5.2 光纖可用點數計算 77
5.3 自行開發演算法之深度校正 78
5.4 光譜訊號不連續之分析 81
5.5 量測結果 83
5.6 系統誤差分析 87
第 6 章 結論與展望 89
6.1 結論 89
6.2 展望 90
參考文獻 92
-
dc.language.isozh_TW-
dc.subject振鏡式掃描zh_TW
dc.subject表面形貌量測zh_TW
dc.subject彩色共焦顯微術zh_TW
dc.subject自動化光學檢測zh_TW
dc.subjectautomated optical inspectionen
dc.subjectchromatic confocal microscopyen
dc.subjectsurface profilometryen
dc.subjectgalvanometer-scanningen
dc.title多點振鏡掃描式全域彩色共焦表面顯微量測系統之研發zh_TW
dc.titleDevelopment of multipoint Galvo-scanned chromatic confocal microscopeen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李朱育;章明;葉勝利zh_TW
dc.contributor.oralexamcommitteeJu-Yi Lee;Ming Chang;Sheng-Li Yehen
dc.subject.keyword彩色共焦顯微術,自動化光學檢測,表面形貌量測,振鏡式掃描,zh_TW
dc.subject.keywordchromatic confocal microscopy,automated optical inspection,surface profilometry,galvanometer-scanning,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202304013-
dc.rights.note未授權-
dc.date.accepted2023-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved