Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90616
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 徐冠倫 | zh_TW |
dc.contributor.advisor | Kuan-Lun Hsu | en |
dc.contributor.author | 林佐庭 | zh_TW |
dc.contributor.author | Tso-Ting Lin | en |
dc.date.accessioned | 2023-10-03T16:52:35Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-27 | - |
dc.identifier.citation | L. V. Assur, “Investigation of plane hinged mechanisms with lower pairs from the point of view of their structure and classification,” Akad. of Sciences, USSR, edited by I.I. Artobolevskii, 1952.
Elad Hahn and Offer Shai, “The unique engineering properties of Assur Groups/Graph, Assur kinematic chains, Baranov trusses and parallel robots,” ASME IDETC/ CIE, Charlotte, North Carolina, USA, 2016. Carlo U. Galletti, “A note on modular approaches to planar linkage kinematic analysis,” Mechanism and Machine Theory, Vol. 21, No. 5, pp. 385-391, 1986. Clement M. Gosselin and Joauad Sefrioui, “Polynomial solutions for the direct kinematic problem of planar three-degree-of-freedom parallel manipulators,” IEEE International Conference on Robotics and Automation, pp. 1124-1129, 1991. Clement M. Gosselin and Jean-Pierre Merlet, “The direct kinematics of planar parallel manipulators: Special Architectures and Number of Solutions,” Mechanism and Machine Theory, Vol. 29, No. 8, pp. 1083-1097, 1994. Jean-Pierre Merlet, “Direct kinematics of planar parallel manipulators,” Proc. IEEE International Conference on Robotics and Automation, pp. 3744-3749, Minneapolis, Minnesota, April 1996. M. J. D Hayes, P.J. Zsombor-Murray, and C. Chen, “Unified kinematics analysis of general planar parallel manipulators,” Journal of Mechanical Design, Vol. 126, pp. 866-874, September 2004. C. Gosselin, J. Angeles, “The optimum kinematics design of a planar three-degreeof-freedom parallel manipulator,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 35-41, March 1988. V. Kumar, “Characterization of workspaces of parallel manipulators,” Journal of Mechanical Design, Vol. 114, pp. 368-375, September 1992. Jean-Pierre Merlet, Clement M. Gosselin, and Nicolas Mouly, “Workspaces of planar manipulators,” Mechanism and Machine Theory, Vol. 33, No. 1/2, pp. 7-20, 1998. Philip Voglewede and Immw Ebert-Uphoff, “Application of workspace generation techniques to determine the unconstrained motion of parallel manipulators,” Journal of Mechanical Design, Vol. 126, pp. 283-290, March 2004. Denny Oetomo, Hwee Choo Liaw, Gursel Alici, and Bijan Shirinzadeh, “Direct kinematics and analytical solution to 3RRR parallel planar mechanisms,” IEEE International Conference on Control, Automation, Robotics and Vision, pp. 2251- 2256, Singapore, 2006. Stefan Staicu, “Kinematics of the 3-RRR planar parallel robot,” UPB Scientific Bulletin, Series D, Vol. 70, No. 2, 2008. Xuchong Zhang, Xianmin Zhang, and Zhong Chen, “Dynamic analysis of a 3-RRR parallel mechanism with multiple clearance joints,” Mechanism and Machine Theory, Vol. 78, pp. 105-115, 2014. Xuping Zhang, James K. Mills, and William L. Cleghorn, “Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links,” Journal of Intelligent and Robotic Systems, Vol. 50, pp. 323-340, 2007. Raza Ur-Rehman, Stephane Caro, Damien Chablat, and Philippe Wenger, “Multiobjective design optimization of 3-PRR planar parallel manipulators,” HAL 20th CIRP Design Conference, Nantes, France, April 2010. Clement M. Gosselin and Martin Jean, “Determination of the workspace of planar parallel manipulators with joint limits,” Robotics and Autonomous Systems, Vol. 17, pp. 129-138, 1996. Xianwen Kong and Clement M. Gosselin, “Forward displacement analysis of thirdclass analytic 3-RPR planar parallel manipulators,” Mechanism and Machine Theory, Vol. 36, pp. 1009-1018, 2001. Curtis L. Collins, “Forward kinematics of planar parallel manipulators in the Clifford algebra of P2,” Mechanism and Machine Theory, Vol. 37, pp. 799-813, 2002. Nicolas Binaud, Stephane Caro, Shaoping Bai, and Philippe Wenger, “Comparison of 3-PPR parallel planar manipulators based on their sensitivity to joint clearances,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010. Stefan Staicu, “Dynamics of the 3-PRP planar parallel robot,” Revue Roumaine des Sciences Techniques – Serie de Mecanique Appliquee, Tome 54, Vol. 2, pp. 125-142, Bucarest, 2009. Sevasti Mitsi, Konstantinos D. Bouzakis, Gabriel Mansour, and Iulian Popescu, “A method for forward displacement analysis of 3-RRP and 3-PRP planar parallel manipulators,” The Romanian Review Precision Mechanics, Optics and Mechantronics, Vol. 39, 2011. Ahmad Zahedi, Hadi Behzadnia, Hassan Ghanbari, and Seyed Hamed Tabatabaei, “Kinematic analysis of the triangle-star robot with telescope arm three kinematics chains as T-S robot (3-PRP),” Recent Advances in Robotics Systems, Intech, 2016. S. Mitsi, “Position analysis in polynomial form of planar mechanisms with a closed chain of the Assur group of class 4,” Mechanism and Machine Theory, Vol. 34, pp. 1195- 1209, 1999. S. Mitsi, K. D. Bouzakis, G. Mansour, and I. Popescu, “Position analysis in polynomial form of planar mechanisms with Assur groups of Class 3 including revolute and prismatic joints,” Mechanism and Machine Theory, Vol. 38, pp. 1325- 1344, 2003. S. Mitsi, K. D. Bouzakis, G. Mansour, and I. Popescu, “Position analysis in polynomial form of class 3 and order 3 with two or three prismatic joints,” Journal Mechanisms and Manipulators, Vol. 5, No. 2, pp. 31-36, 2006. S. Mitsi, K. D. Bouzakis, G. Mansour, and I. Popescu, “Position analysis in polynomial form of class-three Assur groups with two or three prismatic joints,” Mechanism and Machine Theory, Vol. 43, pp. 1401-1415, 2008. Wen-Yeuan Chung, “The position analysis of Assur kinematics chain with five links,” Mechanism and Machine Theory, Vol. 40, pp. 1015-1029, 2005. Wen-Yeuan Chung, “Double configurations of five-link Assur kinematic chain and stationary configurations of Stephenson six-bar,” Mechanism and Machine Theory, Vol. 42, pp. 1653-1662, 2007. Hao Wang, ZhongQin Lin, and XinMin Lai, “Composite modeling method in dynamics of planar mechanical system,” Science in China, Series E: Technological Sciences, 2008. 李树军、戴建生, “基于 Assur 杆组元素的平面机构的拓扑描述,” 机械工程学报, Vol. 47, No. 19, pp. 8-13, 2011. Y. Sun, D. Dong, J. Zheng, “Solving the Kinematics of the Planar Mechanism Using Data Structures of Assur Groups,” Journal of Mechanisms and Robotics, Vol. 8, Issue. 6, 061002. Clement Gosselin and Jorge Angeles, “Singularity Analysis of Closed-Loop Kinematic Chains,” IEEE Transactions on Robotics and Automation, Vol. 6, No. 3, pp. 281- 290, 1990. Stefan Staicu, “Dynamics of the 3-PRP planar parallel robot,” Revue Roumaine des Sciences Techniques – Serie de Mecanique Appliquee, Tome 54, No. 2, pp. 125-142, Bucarest, 2009. Sevasti Mitsi, Konstantinos D. Bouzakis, Gabriel Mansour and Iulian Popescu, “A method for forward displacement analysis of 3-RRP and 3-PRP planar parallel manipulators,” The Romanian Review Precision Mechanics, Optics and Mechantronics, No. 39, 2011. Ahmad Zahedi, Hadi Behzadnia, Hassan Ghanbari and Seyed Hamed Tabatabaei, “Kinematic analysis of the triangle-star robot with telescope arm three kinematics chains as T-S robot (3-PRP),” Recent Advances in Robotics Systems, Intech, 2016. Jianyou Han and Shengjie Shi, “A novel methodology for determining the singularities of planar linkages based on Assur groups,” Mechanism and Machine Theory, No. 147, 2020. Sébastien Briot, Vigen Arakelian, Nayelli Sauvestre and Jean-Paul Le Baron, “Shaking Forces Minimization of High-Speed Robots via an Optimal Motion Planning,” CISM-IFToMM Symposium on Robot Design, Dynamics, and Control (ROMANSY 2010), No.18, pp.307-314, 2010. Antonio Armillotta, “Force analysis as a support to computer-aided tolerancing of planar linkages,” Mechanism and Machine Theory, No.93, pp.11-25, 2015. 戴振哲,平面連桿機構之模組化力學分析方法,碩士論文,國立臺灣大學機械工程學系,台北市,2021。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90616 | - |
dc.description.abstract | Assur 群是機構模組化分析的基本模組,近年已有諸多研究針對各種Assur群進行分析。然而各種模組的分析方式各異,導致低階模組的分析方法無法有效的套用至高階模組,並且不同文獻對於多接頭桿件與滑動接頭的定義方式亦有所不同,因此當一機構之構成模組在不同文獻中時,需要另外轉換定義方式,大幅降低模組化分析帶來的效益。本論文提出二種各Assur群模組皆適用之分析方法:重新定義之閉迴路法與二接頭桿法,並重新定義桿件與接頭之位置表述方式,使模組化分析能真正便捷地將一模組之分析結果傳遞至另一模組。奇異構型在運動學與力學上的特殊性使其成為機構分析不可或缺的部分,利用Assur群亦可對奇異構型進行模組化的分析。此外,本研究提出以Assur群進行靜力學模組化分析之方法,此方法可快速辨別外力在機構中的傳遞順序,並且配合運動學中重新定義之桿件與接頭位置表述方式,使一機構在完成運動學分析後能以相同的定義方式繼續進行靜力學分析。 | zh_TW |
dc.description.abstract | Assur Groups are the basic modules of modular analysis of mechanism. In recent years, there have been many studies on the kinematic analysis of various Assur Group modules. However, the analysis methods of each modules are different, which makes it difficult to apply the analysis method of Low-Class modules to High-Class modules. Different studies also have different definitions for multi-joint links and prismatic joints. Therefore, when the modules of a mechanism are analyzed in different studies, converting definition between different studies is required, which reduce the benefits of modular analysis significantly. This paper proposes an analysis method that is applicable to all Assur Group modules and redefines the notation of links and joints, so that modular analysis can transfer the analysis result of one module to another conveniently. Singularities are configurations of a mechanism where the kinematic and static feature of the mechanism changed instantaneously, making it a unique part in mechanism analysis to be reckoned with. Singularity analysis could also be modularized by using Assur Group. In addition, this paper proposes a static modular analysis method using Assur Group, and cooperates with the redefined notation of links and joints, so that the static analysis of a mechanism can applied under the same notation after the kinematics analysis is completed. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:52:35Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:52:35Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 ix 表目錄 xvi 第一章 前言 1 1-1 概論 1 1-2 文獻回顧 1 1-3 研究目標 3 第二章 各ASSUR群模組通用之運動學分析 6 2-1 Assur群之定義與分類 6 2-2 桿件與接頭表示法之統一 9 2-2-1 平面滑動接頭位置表示法 9 2-2-2 多接頭桿之描述參數定義 10 2-2-3 具有滑動接頭之桿件的尺寸符號判定 12 2-3 二接頭桿方程式 14 2-3-1 順向方程式 15 2-3-2 逆向方程式 19 2-3-3 接頭位置關係式 21 2-4 建立運動學方程式之通用方法 22 2-4-1 閉迴路法之重新定義 23 2-4-2 二接頭桿法 26 2-4-3 二接頭桿法與閉迴路法之比較 30 2-5 速度與加速度分析 33 第三章 ASSUR GROUP與機構之運動學分析實例 35 3-1 Class 2 Order 2模組之運動學 35 3-1-1 RRR模組 36 3-1-2 RPR模組 37 3-1-3 RRP模組 39 3-1-4 RPP模組 40 3-1-5 PRP模組 42 3-2 Class 3 Order 3模組之運動學 43 3-2-1 RR_RR_RR模組 45 3-2-2 RR_RR_PR模組 48 3-2-3 PR_PR_RR模組 50 3-2-4 PR_PR_PR模組 52 3-2-5 RP_RR_RR模組 54 3-2-6 RP_RP_RR模組 57 3-2-7 RP_RP_RP模組 59 3-2-8 PR_RP_RR模組 61 3-2-9 PR_RP_PR模組 64 3-2-10 PR_RP_RP模組 66 3-2-11 PP_RR_RR模組 68 3-2-12 RR_PR_PP模組 70 3-2-13 RP_PP_RR模組 72 3-2-14 RP_RP_PP模組 74 3-2-15 RP_PP_PR模組 76 3-2-16 PR_PR_PP模組 78 3-3 高階模組 80 3-3-1 Class3 Order4模組 80 3-3-2 Class4 Order2模組 82 3-3-3 Class6 Order3模組 84 3-4 機構分析實例 86 3-4-1 七桿九接頭結構 86 3-4-2 六桿七接頭機構 92 3-4-3 九桿十一接頭之二自由度機構 98 第四章 奇異構型分析 104 4-1 以Assur Group判別機構之奇異構型 104 4-2 Class 2 Order 2模組之奇異構型 106 4-2-1 RRR模組 106 4-2-2 RPR模組 108 4-2-3 RRP模組 109 4-2-4 RPP模組 111 4-2-5 PRP模組 112 4-3 Class 3 Order模組之奇異構型 114 4-3-1 RR_RR_RR模組 114 4-3-2 RR_RR_PR模組 116 4-3-3 RR_PR_PR模組 118 4-3-4 PR_PR_PR模組 120 4-3-5 RR_RR_RP模組 122 4-3-6 RR_RP_RP模組 125 4-3-7 RP_RP_RP模組 127 4-3-8 PR_RP_RR模組 129 4-3-9 PR_RP_PR模組 132 4-3-10 PR_RP_RP模組 134 4-3-11 RR_RR_PP模組 136 4-3-12 RR_PR_PP 模組 138 4-3-13 RP_PP_RR模組 140 4-3-14 RP_RP_PP模組 143 4-3-15 RP_PP_PR模組 144 4-3-16 PR_PR_PP模組 147 4-4 機構奇異構型分析實例 150 第五章 以ASSUR GROUP為模組之機構靜力學分析 158 5-1 以Assur Group作為靜力學分析模組之可行性 158 5-2 接頭與桿件之力平衡式 159 5-2-1 接頭之力平衡式 160 5-2-2 桿件之力平衡式 163 5-3 Class 2 Order 2模組之靜力學 174 5-3-1 RRR模組 174 5-3-2 RPR模組 177 5-3-3 RRP模組 180 5-3-4 RPP模組 183 5-3-5 PRP模組 187 5-4 Class 3 Order 3模組之靜力學 192 5-4-1 RR_RR_RR模組 192 5-4-2 RR_RR_PR模組 197 5-4-3 RR_PR_PR模組 203 5-4-4 PR_PR_PR模組 209 5-4-5 RR_RR_RP模組 215 5-4-6 RR_RP_RP模組 221 5-4-7 RP_RP_RP模組 226 5-4-8 PR_RP_RR模組 233 5-4-9 PR_RP_PR模組 238 5-4-10 PR_RP_RP模組 245 5-4-11 RR_RR_PP模組 251 5-4-12 RR_PR_PP模組 257 5-4-13 RP_PP_RR模組 264 5-4-14 RP_RP_PP模組 270 5-4-15 RP_PP_PR模組 277 5-4-16 PR_PR_PP模組 284 5-5 機構靜力學分析實例 290 5-5-1 零自由度結構之地桿受力 291 5-5-2 以施於輸入桿之力平衡外力 297 5-5-3 以施於非輸入桿之力平衡外力 303 5-5-4 以多個輸入平衡外力 308 第六章 結論 320 參考文獻 321 | - |
dc.language.iso | zh_TW | - |
dc.title | Assur群之運動學、奇異構型與靜力學模組化分析 | zh_TW |
dc.title | Modular Kinematic, Singularity and Static Analysis Using Assur Group | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳羽薰;陳冠辰;歐峯銘 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Hsun Chen;Guan-Chen Chen;Feng-Ming Ou | en |
dc.subject.keyword | 模組化方法,運動學分析,奇異構型分析,靜力學分析,Assur群,平面連桿機構, | zh_TW |
dc.subject.keyword | modular method,kinematics,singularity analysis,statics,Assur Group,planar mechanical linkage, | en |
dc.relation.page | 326 | - |
dc.identifier.doi | 10.6342/NTU202302074 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-07-31 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
Appears in Collections: | 機械工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf Restricted Access | 26.52 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.