請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90612完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | zh_TW |
| dc.contributor.advisor | Chun-Han Ko | en |
| dc.contributor.author | 周易萱 | zh_TW |
| dc.contributor.author | Yi-Shiuan Chou | en |
| dc.date.accessioned | 2023-10-03T16:51:34Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Acsova, A., Hojerova, J., Janotkova, L., Bendova, H., Jedličková, L., Hamranova, V., & Martiniakova, S. (2021). The real UVB photoprotective efficacy of vegetable oils: in vitro and in vivo studies. Photochemical & Photobiological Sciences, 20, 139-151.
Almashhadani, A. Q., Leh, C. P., Chan, S. Y., Lee, C. Y., & Goh, C. F. (2022). Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters. Carbohydrate Polymers, 119285. Asadi, A., Pourfattah, F., Szilágyi, I. M., Afrand, M., Żyła, G., Ahn, H. S., ... & Mahian, O. (2019). Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics sonochemistry, 58, 104701. Catalano, R., Masion, A., Ziarelli, F., Slomberg, D., Laisney, J., Unrine, J. M., ... & Labille, J. (2020). Optimizing the dispersion of nanoparticulate TiO2-based UV filters in a non-polar medium used in sunscreen formulations–The roles of surfactants and particle coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599, 124792. Chang, F, J., & Duh, M, H. (1988). A fundamental study of the composition of major woods grown in Taiwan (П) composition and fiber dimension of ten species. Quarterly Journal of Chinese Forestry, 21(4), 101-109. Chang, T. C., Chang, S. T., & Cheng, S. S. (2022). Antioxidant activities of ethanolic extract and lyoniresinol from bark of Zelkova serrata. Journal of Wood Chemistry and Technology, 42(4), 265-273. Cheng, S., & Chang, S. (2000). A review: studies on the extractives of Japanese cedar (Cryptomeria japonica D. Don). Forest Products Industries, 19(4), 505-514. Chen, C. C., Wu, J. H., Yang, N. S., Chang, J. Y., Kuo, C. C., Wang, S. Y., & Kuo, Y. H. (2010). Cytotoxic C35 terpenoid cryptotrione from the bark of Cryptomeria japonica. Organic Letters, 12(12), 2786-2789. Chen, C. Y., Ko, S. H., & Lam, T. Y. (2021). Modeling biomass allocation strategy of young planted Zelkova serrata trees in Taiwan with component ratio method and seemingly unrelated regressions. Scientific Reports, 11(1), 7536. Chen, K., Zhou, X., Wang, D., Li, J., & Qi, D. (2022). Synthesis and characterization of a broad-spectrum TiO2@ lignin UV-protection agent with high antioxidant and emulsifying activity. International Journal of Biological Macromolecules, 218, 33-43. Chiu, L, W., Huang, Q, X., Wu, C, C., Hsien, H, T. (2015). The summary of the 4th national forest resource survey. Taiwan Forestry Journal, 41(4), 3-13. Chu, Y., Sun, Y., Wu, W., & Xiao, H. (2020). Dispersion properties of nanocellulose: a review. Carbohydrate polymers, 250, 116892. Dos Santos, A. C., Ximenes, E., Kim, Y., & Ladisch, M. R. (2019). Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends in biotechnology, 37(5), 518-531. Dutra, E. A., Oliveira, D. A. G. D. C., Kedor-Hackmann, E. R. M., & Santoro, M. I. R. M. (2004). Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Revista Brasileira de Ciências Farmacêuticas, 40, 381-385. Espinoza-Acosta, J. L., & Figueroa-Espinoza, E. G. (2022). Recent Progress in the Production of Lignin-based Sunscreens: A Review. BioResources, 17(2). Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233-269. Galanakis, C. M., Tsatalas, P., & Galanakis, I. M. (2018). Implementation of phenols recovered from olive mill wastewater as UV booster in cosmetics. Industrial Crops and Products, 111, 30-37. Gutiérrez-Hernández, J. M., Escalante, A., Murillo-Vázquez, R. N., Delgado, E., González, F. J., & Toríz, G. (2016). Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. Journal of Photochemistry and Photobiology B: Biology, 163, 156-161. He, H., Li, A., Li, S., Tang, J., Li, L., & Xiong, L. (2020). Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine & pharmacotherapy= Biomedecine & pharmacotherapie, 134, 111161-111161. He, H., Qin, J., Ma, Z., Sun, W., Yan, W., He, G., ... & Zhang, D. (2020). Highly efficient regeneration and medicinal component determination of Phellodendron chinense Schneid. In Vitro Cellular & Developmental Biology-Plant, 56, 775-783. Horiba, H., Nakagawa, T., Zhu, Q., Ashour, A., Watanabe, A., & Shimizu, K. (2016). Biological activities of extracts from different parts of Cryptomeria japonica. Natural product communications, 11(9), 1934578X1601100939. Huang, Y., Law, J. C. F., Lam, T. K., & Leung, K. S. Y. (2021). Risks of organic UV filters: A review of environmental and human health concern studies. Science of the Total Environment, 755, 142486. Hubbell, C. A., & Ragauskas, A. J. (2010). Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource technology, 101(19), 7410-7415. Joffres, B., Laurenti, D., Charon, N., Daudin, A., Quignard, A. L. A. I. N., & Geantet, C. (2013). Thermochemical conversion of lignin for fuels and chemicals: a review. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 68(4), 753-763. Joram Mendoza, D., Mouterde, L. M., Browne, C., Singh Raghuwanshi, V., Simon, G. P., Garnier, G., & Allais, F. (2020). Grafting Nature‐Inspired and Bio‐Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Anti‐UV Properties. ChemSusChem, 13(24), 6552-6561. Kaijanen, L., Paakkunainen, M., Pietarinen, S., Jernström, E., & Reinikainen, S. P. (2015). Ultraviolet detection of monosaccharides: Multiple wavelength strategy to evaluate results after capillary zone electrophoretic separation. International Journal of Electrochemical Science, 10(4), 2950-2961. Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., & Thomas, S. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 132, 368-393. Kim, T. H., Park, S. H., Lee, S., Bharadwaj, A. S., Lee, Y. S., Yoo, C. G., & Kim, T. H. (2023). A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites. Energies, 16(5), 2231. Kumar, R., Hu, F., Hubbell, C. A., Ragauskas, A. J., & Wyman, C. E. (2013). Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresource technology, 130, 372-381. Le Gars, M., Douard, L., Belgacem, N., & Bras, J. (2020). Cellulose nanocrystals: From classical hydrolysis to the use of deep eutectic solvents. London, UK: IntechOpen. Lee, S. C., Tran, T. M. T., Choi, J. W., & Won, K. (2019). Lignin for white natural sunscreens. International journal of biological macromolecules, 122, 549-554. Lee, S. C., Lee, S. H., & Won, K. (2019). Wood powder as a new natural sunscreen ingredient. Biotechnology and Bioprocess Engineering, 24, 258-263. Lee, S., Choi, D., Lee, H., & Kang, H. (2000). Studies on biological activity of wood extractives (II)-antimicrobial and antioxidative compound isolated from heartwood of Zelkova serrata. Mokchae Konghak= Journal of the Korean Wood Science and Technology, 28(2), 32-41. Li, X. H., Zhang, W. J., Qi, H. Y., & Shi, Y. P. (2009). Phenolic constituents of Phellodendron chinense bark. Canadian Journal of Chemistry, 87(9), 1218-1221. Liao, J. J., Abd Latif, N. H., Trache, D., Brosse, N., & Hussin, M. H. (2020). Current advancement on the isolation, characterization and application of lignin. International journal of biological macromolecules, 162, 985-1024. Lima, A., Arruda, F., Janeiro, A., Medeiros, J., Baptista, J., Madruga, J., & Lima, E. (2022). Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae)–A critical review. Phytochemistry, 113520. Lin, M., Yang, L., Zhang, H., Xia, Y., He, Y., Lan, W., ... & Lu, F. (2021). Revealing the structure-activity relationship between lignin and anti-UV radiation. Industrial Crops and Products, 174, 114212. Ma, Y., & Yoo, J. (2021). History of sunscreen: An updated view. Journal of cosmetic dermatology, 20(4), 1044-1049. Mansur, J. D. S., Breder, M. N. R., Mansur, M. C. D. A., & Azulay, R. D. (1986). Determinaçäo do fator de proteçäo solar por espectrofotometria. An. Bras. Dermatol, 121-4. Meftahi, A., Samyn, P., Geravand, S. A., Khajavi, R., Alibkhshi, S., Bechelany, M., & Barhoum, A. (2022). Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications. Carbohydrate Polymers, 278, 118956. Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25. Nishida, T. (1995). Superoxide dismutase mimic and tyrosinase inhibitory activities of extractives from sugi (Cryptomeria japonica). Mokuzai Gakkaishi, 41, 522-524. Niu, F., Li, M., Huang, Q., Zhang, X., Pan, W., Yang, J., & Li, J. (2017). The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydrate Polymers, 165, 197-204. Ngoc, L. T. N., Tran, V. V., Moon, J. Y., Chae, M., Park, D., & Lee, Y. C. (2019). Recent trends of sunscreen cosmetic: An update review. Cosmetics, 6(4), 64. Osterwalder, U., Sohn, M., & Herzog, B. (2014). Global state of sunscreens. Photodermatology, photoimmunology & photomedicine, 30(2-3), 62-80. Park, J., Shin, H., Yoo, S., Zoppe, J. O., & Park, S. (2015). Delignification of lignocellulosic biomass and its effect on subsequent enzymatic hydrolysis. BioResources, 10(2), 2732-2743. Qian, Y., Qiu, X., & Zhu, S. (2015). Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chemistry, 17(1), 320-324. Qian, Y., Qiu, X., & Zhu, S. (2016). Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustainable Chemistry & Engineering, 4(7), 4029-4035. Qian, Y., Zhong, X., Li, Y., & Qiu, X. (2017). Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Industrial Crops and Products, 101, 54-60. Qiu, X., Li, Y., Qian, Y., Wang, J., & Zhu, S. (2018). Long-acting and safe sunscreens with ultrahigh sun protection factor via natural lignin encapsulation and synergy. ACS Applied Bio Materials, 1(5), 1276-1285. Rabani, I., Jang, H. N., Park, Y. J., Tahir, M. S., Lee, Y. B., Moon, E. Y., ... & Seo, Y. S. (2022). Titanium dioxide incorporated in cellulose nanofibers with enhanced UV blocking performance by eliminating ROS generation. RSC advances, 12(52), 33653-33665. Rana, A. K., Frollini, E., & Thakur, V. K. (2021). Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules, 182, 1554-1581. Sayre, R. M., Agin, P. P., LeVee, G. J., & Marlowe, E. (1979). A comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology, 29(3), 559-566. Seo, G. Y., Lee, J. H., Kim, J. H., Shim, J. B., Hong, H. J., Kim, E., ... & Kim, Y. J. (2018). Effects of emulsifying agents on the safety of titanium dioxide and zinc oxide nanoparticles in sunscreens. Journal of Dispersion Science and Technology, 39(11), 1544-1549. Schneider, W. D. H., Dillon, A. J. P., & Camassola, M. (2021). Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnology advances, 47, 107685. Sun, Y., Lenon, G. B., & Yang, A. W. H. (2019). Phellodendri cortex: a phytochemical, pharmacological, and pharmacokinetic review. Evidence-Based Complementary and Alternative Medicine, 2019. Tyner, K. M., Wokovich, A. M., Godar, D. E., Doub, W. H., & Sadrieh, N. (2011). The state of nano‐sized titanium dioxide (TiO2) may affect sunscreen performance. International journal of cosmetic science, 33(3), 234-244. Wang, Q., Xiao, S., Shi, S. Q., & Cai, L. (2018). The effect of delignification on the properties of cellulosic fiber material. Holzforschung, 72(6), 443-449. Won, K. R., Jung, S. Y., Yoo, B. O., Hong, N. E., & Byeon, H. S. (2017). Study on Red and Black Heartwood Properties of Cryptomeria Japonica in Southern Region of Korea. Journal of the Korean Wood Science and Technology, 45(6), 753-761. Yu, M., He, D., Zhang, Y., He, D., Wang, X., & Zhou, J. (2021). Characterization of lignin extracted from Acanthopanax senticosus residue using different methods on UV-resistant behavior. International Journal of Biological Macromolecules, 192, 498-505. Zhang, H., Liu, X., Fu, S., & Chen, Y. (2019). High-value utilization of kraft lignin: Color reduction and evaluation as sunscreen ingredient. International journal of biological macromolecules, 133, 86-92. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90612 | - |
| dc.description.abstract | 本研究旨在探討不同木質纖維素生物質經過不同前處理,其化學組成成分、木質素含量、粒徑大小與防曬效果之間的關係,用以評估經過前處理之木質纖維素生物質作為防曬成分的潛力。本實驗將木質纖維素生物質材料柳杉樹皮木粉(CJB)及台灣櫸心材木粉(ZSHW)進行亞氯酸鹽法去木質素、硫酸水解及纖維素酶水解,並將柳杉樹皮木粉、台灣櫸心材木粉及黃檗樹皮木粉(PCB)以熱水萃取製得熱水萃取液。將上述處理後的木質纖維素生物質顆粒及熱水萃取液進行粒徑分布分析及紫外線(UV)吸收值測試。
研究結果顯示,經過亞氯酸鹽法去木質素後,木質纖維素生物質可以透過硫酸水解或纖維素酶水解減小粒徑,並提升紫外線吸收值。木質素含量在20%至45%時,木質素含量對紫外線吸收值的影響較大,木質素含量越高,紫外線吸收值及防曬係數(SPF)值越高。反之,木質素含量在10%以下時,粒徑大小對紫外線吸收值的影響較大,粒徑越小,紫外線吸收值及防曬係數值越高。 經過前處理之木質纖維素生物質顆粒,其防曬係數值可由未處理之1.34提升至5.08,可達到同等重量二氧化鈦(TiO2)防曬係數值的17.99%。木質纖維素生物質之熱水萃取液也有良好的防曬係數值,尤其是黃檗樹皮木粉之熱水萃取液,其防曬係數值為22.40,可達到同等重量二氧化鈦防曬係數值的79.37%。因此,經過本研究前處理的木質纖維素生物質顆粒及其熱水萃取液皆有應用於防曬成分的潛力。 | zh_TW |
| dc.description.abstract | This study investigates the relationship between the chemical composition, lignin content, particle size and sun-blocking property of various lignocellulosic biomass after different pretreatments. In this study, the wood flour of bark of Cryptomeria japonica (CJB) and the wood flour of heartwood of Zelkova serrata (ZSHW) were subjected to acidified sodium chlorite method delignification, sulfuric acid hydrolysis and cellulase hydrolysis. CJB, ZSHW and the wood flour of bark of Phellodendron chinense (PCB) were subjected to hot water extraction to obtain the hot water extracts. Particle size distribution analysis and the UV absorbance test of pretreated biomass particles and hot water extracts were conducted.
Result shows that after delignification by acidified sodium chlorite method, the particle size of lignocellulosic biomass decreased and the UV absorbance value increased by sulfuric acid hydrolysis or cellulase hydrolysis. When the lignin content was about 20% to 45%, the lignin content had a greater impact on the UV absorbance value. The higher the lignin content, the higher the UV absorbance value and SPF value were demonstrated. On the contrary, when the lignin content was below 10%, the particle size had a greater impact on the UV absorbance value. The smaller the particle size, the higher the UV absorbance value and SPF value will be. SPF values of lignocellulosic biomass particle increased from 1.34 to 5.08 after pretreatments, can reach 17.99% of weight based SPF value of titanium dioxide (TiO2). Hot water extracts from lignocellulosic biomass also have great UV absorbance value, especially the hot water extract from PCB. Its SPF value is 22.40, able to reach 79.37% of weight based SPF value of TiO2. Therefore, both the lignocellulosic biomass particles and hot water extracts in this study have the potential to be applied to sunscreen agents. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:51:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:51:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………………………… i
中文摘要………………………………………………………………………………………………………… ii ABSTRACT……………………………………………………………………………………………………… iii CONTENTS……………………………………………………………………………………………………… v LIST OF FIGURES…………………………………………………………………………………… viii LIST OF TABLES……………………………………………………………………………………… xi LIST OF ABBREVIATION……………………………………………………………………… xiii Chapter 1 Introduction………………………………………………… 1 Chapter 2 Literature Review………………………………………2 2.1 Wood flour………………………………………………………………………………2 2.1.1 Cryptomeria japonica……………………………………………………2 2.1.2 Zelkova serrata…………………………………………………………………3 2.1.3 Phellodendron chinense………………………………………………4 2.2 Lignocellulosic biomass……………………………………………5 2.2.1 Cellulose…………………………………………………………………………………6 2.2.2 Hemicellulose………………………………………………………………………9 2.2.3 Lignin…………………………………………………………………………………………9 2.3 Treatment………………………………………………………………………………11 2.3.1 Acidified sodium chlorite method…………………11 2.3.2 Sulfuric acid hydrolysis………………………………………12 2.3.3 Cellulase hydrolysis…………………………………………………14 2.3.4 Ultrasonication………………………………………………………………15 2.3.5 Hot water extraction…………………………………………………15 2.4 Sunscreens……………………………………………………………………………16 2.4.1 Sunscreens agents…………………………………………………………16 2.4.2 Emulsifier……………………………………………………………………………17 2.4.3 Lignin as sun protective material………………17 2.4.4 Cellulose applies to sunscreens……………………21 2.5 Sun protection…………………………………………………………………21 2.5.1 Ultraviolet (UV) radiation…………………………………21 2.5.2 Sun protection factor (SPF)………………………………22 Chapter 3 Materials and Methods…………………………24 3.1 Research framework………………………………………………………24 3.2 Materials………………………………………………………………………………25 3.2.1 Substrates……………………………………………………………………………25 3.2.2 Chemicals………………………………………………………………………………25 3.2.3 Enzyme………………………………………………………………………………………26 3.3 Instruments and Equipment……………………………………26 3.3.1 Instruments…………………………………………………………………………26 3.3.2 Equipment………………………………………………………………………………26 3.4 Methods……………………………………………………………………………………27 3.4.1 Acidified sodium chlorite method…………………27 3.4.2 Sulfuric acid hydrolysis………………………………………27 3.4.3 Cellulase hydrolysis…………………………………………………27 3.4.4 Ultrasonication………………………………………………………………28 3.4.5 Hot water extraction…………………………………………………28 3.4.6 Total organic carbon (TOC) test……………………28 3.4.7 Particle size distribution analysis…………29 3.4.8 UV absorbance test………………………………………………………31 3.4.9 SPF test…………………………………………………………………………………32 Chapter 4 Results and Discussion………………………34 4.1 Chemical composition of lignocellulosic biomass…………………………………………………………………………………………………………34 4.2 Particle size analysis……………………………………………36 4.2.1 Particle size analysis of cellulosic biomass…………………………………………………………………………………………………………36 4.2.2 Particle size analysis of CJB biomass……40 4.2.3 Particle size analysis of ZSHW biomass…52 4.2.4 Particle size analysis of PCB biomass……64 4.2.5 Particle size analysis of TiO2 and ZnO…66 4.3 Total organic carbon (TOC) test……………………68 4.3.1 TOC test of hot water extracts (liquid) from lignocellulosic biomass………………………………………………………………68 4.3.2 TOC test of hydrolysates (liquid) from CJB biomass after cellulase hydrolysis…………………………………69 4.3.3 TOC test of hydrolysates (liquid) from ZSHW biomass after cellulase hydrolysis…………………………………70 4.4 UV absorbance and SPF………………………………………………71 4.4.1 UV absorbance and SPF of cellulosic biomass…………………………………………………………………………………………………………71 4.4.2 UV absorbance and SPF of CJB biomass………74 4.4.3 UV absorbance and SPF of ZSHW biomass……83 4.4.4 UV absorbance and SPF of hot water extracts (liquid) from lignocellulosic biomass…………………………92 4.4.5 UV absorbance and SPF of hydrolysates (liquid) from CJB biomass after cellulase hydrolysis…………94 4.4.6 UV absorbance and SPF of hydrolysates (liquid) from ZSHW biomass after cellulase hydrolysis………96 4.4.7 UV absorbance and SPF of TiO2 and ZnO……98 4.4.8 UV absorbance and SPF of lignocellulosic biomass mixed with lecithin emulsifier and TiO2………………………………………………………………………………………………………………100 4.5 The relationship between properties of lignocellulosic biomass and SPF………………………………………104 4.5.1 The relationship between lignin content and SPF…………………………………………………………………………………………………………………104 4.5.2 The relationship between particle size and SPF…………………………………………………………………………………………………………………107 4.5.3 Compare the SPF of TiO2, ZnO and lignocellulosic biomass……………………………………………………………115 4.5.4 Compared with other studies……………………………116 Chapter 5 Conclusion……………………………………………………117 REFERENCE…………………………………………………………………………………………………119 APPENDICES………………………………………………………………………………………………125 Appendix A. Particle size, UV absorbance and SPF…………………………………………………………………………………………………………………125 Appendix B. Various parameters obtained by particle size analysis and SPF…………………………………………………………………128 | - |
| dc.language.iso | en | - |
| dc.subject | 木質纖維素生物質 | zh_TW |
| dc.subject | 防曬 | zh_TW |
| dc.subject | 防曬係數(SPF) | zh_TW |
| dc.subject | 紫外線(UV)吸收值 | zh_TW |
| dc.subject | 粒徑 | zh_TW |
| dc.subject | 木質素 | zh_TW |
| dc.subject | 水解 | zh_TW |
| dc.subject | hydrolysis | en |
| dc.subject | Lignocellulosic biomass | en |
| dc.subject | SPF | en |
| dc.subject | sun protection | en |
| dc.subject | particle size | en |
| dc.subject | UV absorbance | en |
| dc.subject | lignin | en |
| dc.title | 前處理對木質纖維素生物質防曬效果之影響 | zh_TW |
| dc.title | Impact of pretreatment on sun-blocking potentials of lignocellulosic biomass | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 藍浩繁;蔡正偉 | zh_TW |
| dc.contributor.oralexamcommittee | Haw-Farn Lan;Jeng-Wei Tsai | en |
| dc.subject.keyword | 木質纖維素生物質,水解,木質素,粒徑,紫外線(UV)吸收值,防曬係數(SPF),防曬, | zh_TW |
| dc.subject.keyword | Lignocellulosic biomass,hydrolysis,lignin,particle size,UV absorbance,SPF,sun protection, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202303913 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
