請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90611
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張培仁 | zh_TW |
dc.contributor.advisor | Pei-Zen Chang | en |
dc.contributor.author | 周暐瀚 | zh_TW |
dc.contributor.author | Wei-Han Jhou | en |
dc.date.accessioned | 2023-10-03T16:51:19Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | [1] B. M. Pereira Guimarães, C. M. da Silva Fernandes, D. Amaral de Figueiredo, F. S. Correia Pereira da Silva, and M. G. Macedo Miranda, "Cutting temperature measurement and prediction in machining processes: comprehensive review and future perspectives," The International Journal of Advanced Manufacturing Technology, pp. 1-30, 2022.
[2] M. Sato, T. Ueda, and H. Tanaka, "An experimental technique for the measurement of temperature on CBN tool face in end milling," International Journal of Machine Tools and Manufacture, vol. 47, no. 14, pp. 2071-2076, 2007. [3] M. Sato, N. Tamura, and H. Tanaka, "Temperature variation in the cutting tool in end milling," Journal of Manufacturing Science and Engineering, vol. 133, no. 2, 2011. [4] M. Saez-de-Buruaga, D. Soler, P. Aristimuño, J. Esnaola, and P. Arrazola, "Determining tool/chip temperatures from thermography measurements in metal cutting," Applied Thermal Engineering, vol. 145, pp. 305-314, 2018. [5] M. de Oliveira Moreira, A. M. Abrão, R. A. Ferreira, and M. P. Porto, "Temperature monitoring of milling processes using a directional-spectral thermal radiation heat transfer formulation and thermography," International Journal of Heat and Mass Transfer, vol. 171, p. 121051, 2021. [6] M. Armendia, A. Garay, A. Villar, M. Davies, and P. Arrazola, "High bandwidth temperature measurement in interrupted cutting of difficult to machine materials," CIRP annals, vol. 59, no. 1, pp. 97-100, 2010. [7] A. F. Campidelli, H. V. Lima, A. M. Abrão, and A. A. Maia, "Development of a wireless system for milling temperature monitoring," The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1, pp. 1551-1560, 2019. [8] U. Karaguzel, M. Bakkal, and E. Budak, "Modeling and measurement of cutting temperatures in milling," Procedia CIRP, vol. 46, pp. 173-176, 2016. [9] U. Karaguzel and E. Budak, "Investigating effects of milling conditions on cutting temperatures through analytical and experimental methods," Journal of Materials Processing Technology, vol. 262, pp. 532-540, 2018. [10] G. Chen, Q. Gao, X. Yang, J. Liu, Y. Su, and C. Ren, "Investigation of heat partition and instantaneous temperature in milling of Ti-6Al-4V alloy," Journal of Manufacturing Processes, vol. 80, pp. 302-319, 2022. [11] A. Nemetz, W. Daves, T. Klünsner, C. Praetzas, W. Liu, T. Teppernegg, C. Czettl, F. Haas, C. Bölling, J. Schäfer, "Experimentally validated calculation of the cutting edge temperature during dry milling of Ti6Al4V," Journal of Materials Processing Technology, vol. 278, p. 116544, 2020. [12] B. Wei, G. Tan, N. Yin, L. Gao, and G. Li, "Research on inverse problems of heat flux and simulation of transient temperature field in high-speed milling," The International Journal of Advanced Manufacturing Technology, vol. 84, pp. 2067-2078, 2016. [13] H. V. Lima, A. F. Campidelli, A. A. Maia, and A. M. Abrão, "Temperature assessment when milling AISI D2 cold work die steel using tool-chip thermocouple, implanted thermocouple and finite element simulation," Applied Thermal Engineering, vol. 143, pp. 532-541, 2018. [14] R. R. Moura, M. B. da Silva, Á. R. Machado, and W. F. Sales, "The effect of application of cutting fluid with solid lubricant in suspension during cutting of Ti-6Al-4V alloy," Wear, vol. 332, pp. 762-771, 2015. [15] M. Hirao, "Determining temperature distribution on flank face of cutting tool," Journal of Materials Shaping Technology, vol. 6, no. 3, pp. 143-148, 1989. [16] G. Le Coz and D. Dudzinski, "Temperature variation in the workpiece and in the cutting tool when dry milling Inconel 718," The International Journal of Advanced Manufacturing Technology, vol. 74, no. 5, pp. 1133-1139, 2014. [17] Y. Xiong, W. Wang, R. Jiang, and K. Lin, "Analytical model of workpiece temperature in end milling in-situ TiB2/7050Al metal matrix composites," International Journal of Mechanical Sciences, vol. 149, pp. 285-297, 2018. [18] Y. Cui, Q. Liu, L. Wang, W. Ding, X. V. Wang, Y. Liu, D. Li, "Research on milling temperature measuring tool embedded with NiCr/NiSi thin film thermocouple," Procedia CIRP, vol. 72, pp. 1457-1462, 2018. [19] J. Li, B. Tao, S. Huang, and Z. Yin, "Cutting tools embedded with thin film thermocouples vertically to the rake face for temperature measurement," Sensors and Actuators A: Physical, vol. 296, pp. 392-399, 2019. [20] C. Hu, K. Zhuang, J. Weng, X. Zhang, and H. Ding, "Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip-line field model," International Journal of Mechanical Sciences, vol. 167, p. 105273, 2020. [21] M. C. Shaw, Metal cutting principles (no. 3). 2005. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90611 | - |
dc.description.abstract | 切削溫度是機械加工中的重要因素,直接影響了加工精度,如加劇刀具磨耗量、使刀具產生熱伸長與降低工件表面的精度;因此,切削溫度的量測對於加工精度的最佳化非常重要。然而,受限於主軸的高速旋轉,切削溫度難以使用有線的方式測量;刀具與工件的斷續接觸也使得切削刃表面無法直接架設感測器。為克服量測上的障礙,本研究開發了一個可以裝設在刀把上的溫度量測模組。使用K型熱電偶作為溫度感測器,量測可拋棄式刀片與切削刀具刀桿之間的位置。熱電偶線透過鎖固刀片的螺絲產生的夾持力固定,量測的溫度資料透過藍芽模組傳輸到電腦端以實現實時的切削溫度量測。量測模組被用於實際切削實驗中進行溫度的量測並與熱像儀進行比較。結果表明,在銑削中碳鋼S50C時的穩態溫度為150-200°C。溫度量測模組具有相當程度的重複性,並且在量測銑削過程中的穩態溫度時,溫度感測模組具有一定的準確性。然而,由於溫度量測點與產生高熱的切削刃具有一段距離。因此,本研究將量測所得的溫度資料進行模擬,逆向運算出加工過程中輸入至刀具中的熱量,並進一步建立出刀具隨時間的溫度場分布。根據模擬結果表明,刀尖點的溫度最高會到達208度。 | zh_TW |
dc.description.abstract | Cutting temperature is an important factor in mechanical machining. It directly affects machining accuracy, such as increased tool wear, thermal deformation of the tool, and decreased surface accuracy of the workpiece. Therefore, accurate measurement of cutting temperature is crucial for optimizing machining precision. However, limit by the high-speed rotation of the spindle, it is hard to measure cutting temperature through wire connection. Additionally, intermittent contact between the tool and the workpiece makes it difficult to directly install sensors on the cutting-edge surface. To overcome these measurement obstacles, this study developed a temperature measurement module which can be attached on the tool holder. K-type thermocouple is used as the temperature sensor, measuring the position between the disposable cutting inserts and the tool shank. The thermocouple wires are clamped with the clamping force generated by fastening the screws which is used to fix the cutting inserts. The measured temperature data was transmitted to the computer in real-time via a Bluetooth module to achieve real-time cutting temperature measurement. The measurement module was used in actual cutting experiments to measure the temperature and compare with the thermography. The results show that the steady-state temperature during milling of S50C carbon steel ranged from 150-200°C. The temperature measurement module demonstrated a certain degree of repeatability. And during the measurement of the steady-state temperature in the milling process, the temperature measurement module demonstrates a certain degree of accuracy. However, due to the distance between the temperature measurement position and the cutting edge where heat is generated, the measured temperature data is used for simulation to inverse calculate the heat flows into the cutting tool during the machining process. Moreover, a temperature field distribution of the tool over time is established. According to the simulation results, the highest temperature at the cutting tool edge can reach 208°C. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:51:18Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:51:19Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENT vi LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Motivation 3 1.2 Literature Survey 4 1.2.1 Radiometric Measurement Method 5 1.2.2 Conductive Temperature Measurement Method 6 1.2.3 Mathematical modeling of milling temperature distribution 10 1.3 Thesis organization 12 Chapter 2 Design of Wireless Real-time Cutting Temperature Measurement Module 13 2.1 Heat Sources in Cutting 13 2.2 Measurement Strategy 14 2.3 Hardware 15 2.3.1 Thermocouple 15 2.3.2 Bluetooth chip 17 2.3.3 Power source 18 2.4 Measuring Circuit 19 2.5 Signal Flow 21 2.6 Measurement Circuit Package 22 2.7 Dynamic Balance of Measurement Circuit Package 24 Chapter 3 Experiment 28 3.1 Experimental Equipment 28 3.1.1 Vertical Machining Center 28 3.1.2 Tool Holder 29 3.1.3 Cutting Tool 30 3.1.4 Workpiece 31 3.1.5 Thermography 32 3.1.6 Plate Heater 33 3.2 Experiment Setup 34 3.3 Experiment Method 35 3.4 Results and Discussion 39 3.4.1 Accuracy of the measurement module and thermography 39 3.4.2 Repeatability of the measurement module 40 3.4.3 Response time of temperature measurement module 41 3.4.4 Impact of cutting parameters on cutting temperature 42 3.4.5 Steady-state cutting temperature 45 3.4.6 Settling time 46 Chapter 4 The Temperature Field Simulation of Cutting Tool Based on Measurement Results 48 4.1 Heat Transfer Theory 49 4.1.1 Heat conduction 49 4.1.2 Heat Convection 50 4.1.3 Heat Radiation 52 4.1.4 Heat Capacity 53 4.2 Simulation Process of Cutting Tools Temperature Field 54 4.2.1 Model Construction 54 4.2.2 Initial Condition 55 4.2.3 Boundary Conditions 56 4.2.4 Events 58 4.2.5 Optimization 59 4.3 Simulation Results 60 Chapter 5 Conclusions and Future Works 63 Reference 66 Appendix 70 | - |
dc.language.iso | en | - |
dc.title | 工具機刀具之即時切削溫度量測方法 | zh_TW |
dc.title | A Real-time Measuring Method for the Cutting Tool Temperature of Machine Tools | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 胡毓忠;李尉彰;蔡燿全;游本豐 | zh_TW |
dc.contributor.oralexamcommittee | Yuh-Chung Hu;Wei-Chang Li;Yao-Chuan Tsai;Ben-Fong Yu | en |
dc.subject.keyword | 銑削溫度,嵌入式熱電偶,無線溫度測量,切削溫度感測模組,逆向運算,溫度場模擬, | zh_TW |
dc.subject.keyword | milling temperature,embedded thermocouple,wireless temperature measurement,cutting temperature measurement module,inverse calculation,temperature field simulation, | en |
dc.relation.page | 77 | - |
dc.identifier.doi | 10.6342/NTU202303557 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-08-07 | 8.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。