請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李賢源 | zh_TW |
| dc.contributor.advisor | Shyan-Yuan Lee | en |
| dc.contributor.author | 魏麗容 | zh_TW |
| dc.contributor.author | Li-Jung Wei | en |
| dc.date.accessioned | 2023-10-03T16:50:32Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | Altman, E. I., Brady, B., Resti, A. & Sironi, A., (2005). The link between default and recovery rates: theory, empirical evidence, and implications. Journal of Business 78, 2203–2227.
Altman, E. I. (2020). Covid-19 and the credit cycle. Journal of Credit Risk, 16(2). Bakshi, G., Gao, X., & Zhong, Z. (2022). Decoding default risk: A review of modeling approaches, findings, and estimation methods. Annual Review of Financial Economics, 14, 391-413. Baum, C. F., & Wan, C. (2010). Macroeconomic uncertainty and credit default swap spreads. Applied Financial Economics, 20(15), 1163-1171. Benos, A., & Papanastasopoulos, G. (2007). Extending the Merton model: A hybrid approach to assessing credit quality. Mathematical and computer modelling, 46(1-2), 47-68. Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. Journal of Finance, 31(2), 351-367. Brigo, D., & Alfonsi, A. (2005). Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model. Finance and Stochastics, 9(1), 29-42. Brigo & Pallavicini (2008). Counterparty risk and CCDSs under correlation. Risk. Bruche, M., & Gonzalez-Aguado, C. (2010). Recovery rates, default probabilities, and the credit cycle. Journal of Banking & Finance, 34(4), 754-764. Bohn, J., & Crosbie, P. (2003). Modeling default risk: Modeling methodology. Moody’s KMV. Carey, M., & Gordy, M. (2003). Systematic Risk in Recoveries on Defaulted Debt [memo]. Federal Reserve Board of Governors, Washington DC. Chen, L., Filipovic˙, D., & Poor, H. V. (2004). Quadratic term structure models for risk−free and defaultable rates. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 14(4), 515-536. Chen, R. R., Cheng, X., & Wu, L. (2013). Dynamic interactions between interest rate and credit risk: Theory and evidence on the credit default swap term structure. Review of Finance, 17(1), 403-441. Chiang, S. L. & Tsai, M. S. (2010). Pricing a defaultable bond with a stochastic recovery rate. Quantitative Finance 10, 49-58. Collin−Dufresne, P., & Goldstein, R. S. (2001). Do credit spreads reflect stationary leverage ratios?. Journal of Finance, 56(5), 1929-1957. Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (1985). An intertemporal general equilibrium model of asset prices. Econometrica: Journal of the Econometric Society, 363-384. Das, S. R., & Hanouna, P. (2009). Implied recovery. Journal of Economic Dynamics and Control, 33(11), 1837-1857. Derbali, A., & Jamel, L. (2019). Dependence of default probability and recovery rate in structural credit risk models: Case of Greek banks. Journal of the Knowledge Economy, 10, 711-733. Divino, J. A., Lima, E. S., & Orrillo, J. (2013). Interest rates and default in unsecured loan markets. Quantitative Finance, 13(12), 1925-1934. Duffee, G. R. (1998). The relation between treasury yields and corporate bond yield spreads. Journal of Finance, 53(6), 2225-2241. Duffee, G. R. (1999). Estimating the price of default risk. The Review of Financial Studies, 12(1), 197-226. Duffie, D., & Singleton, K. J. (1999). Modeling term structures of defaultable bonds. Review of Financial Studies, 12(4), 687-720. Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump diffusions. Econometrica, 68(6), 1343-1376. Duffie, D., Pedersen, L. H., & Singleton, K. J. (2003). Modeling sovereign yield spreads: A case study of Russian debt. Journal of Finance, 58(1), 119-159. Dullmann, K., & Gehde-Trapp, M. (2004). Systematic risk in recovery rates: an empirical analysis of US corporate credit exposures. Available at SSRN 2793954. Ericsson, J., & Reneby, J. (2005). Estimating structural bond pricing models. Journal of Business, 78(2), 707-735. European Central Bank (2007). ECB Financial Stability Review: The impact of short-term interest rate on bank credit risk-taking. Retrieved from https://www.ecb.europa.eu/pub/pdf/fsr/art/ecb.fsrart20071202.en.pdf. Feldhutter, P., & Lando, D. (2008). Decomposing swap spreads. Journal of Financial Economics, 88(2), 375-405. Fruhwirth, M., Schneider, P., & Sogner, L. (2010). The Risk microstructure of corporate bonds: A case study from the German corporate bond market. European Financial Management, 16(4), 658-685. Frye, J. (2000), Collateral Damage Detected, Federal Reserve Bank of Chicago. Working Paper, Emerging Issues Series, October, 1-14. Frye, J. (2013). Loss given default as a function of the default rate. Federal Reserve Bank of Chicago, 1-15 Gonzalez Aguado, C., & Suarez, J. (2015). Interest rates and credit risk. Journal of Money, Credit and Banking, 47(2-3), 445-480. Hilscher, J., Jarrow, R. A., & van Deventer, D. R. (2021). The valuation of corporate coupon bonds. Available at SSRN 3277092. Hull, J. (2014) Options, Futures and Other Derivatives. 9th Edition, Prentice Hall, Upper Saddle River. Ismail, A. G., & Sulaiman, A. A. (2007). Default and recovery rates on Islamic banks financing: Implications for the new capital adequacy standard. Review of Islamic Economics, 11(Special Issue), 107-122. Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50(1), 53-85. Jarrow, R. (2001). Default parameter estimation using market prices. Financial Analysts Journal, 57(5), 75-92. Jokivuolle, E., & Peura, S. (2000). A model for estimating recovery rates and collateral haircuts for bank loans. Bank of Finland Research Discussion Paper, (2). Karoui, L. (2005). Modeling the term structure of defaultable bonds under recovery risk. Unpublished working paper. FDIC. Lando, D. (1998). On Cox processes and credit risky securities. Review of Derivatives research, 2, 99-120. Larralde, H. (2004). Statistical properties of a discrete version of the OrnsteinUhlenbeck process. Physical review E, 69(2), 027102. Lefebvre, M., & Guilbault, J. L. (2009). First hitting place probabilities for a discrete version of the Ornstein-Uhlenbeck process. International Journal of Mathematics and Mathematical Sciences, 2009. Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuing risky fixed and floating rate debt. Journal of Finance, 50(3), 789-819. Longstaff, F. A., Pan, J., Pedersen, L. H., & Singleton, K. J. (2011). How sovereign is sovereign credit risk?. American Economic Journal: Macroeconomics, 3(2), 75-103. Ma, Y., & Xu, W. (2016). Structural credit risk modelling with Hawkes jump diffusion processes. Journal of Computational and Applied Mathematics, 303, 69-80. Madan, D. B., Bakshi, G., & Zhang, F. X. (2006). Understanding the role of recovery in default risk models: Empirical comparisons and implied recovery rates. Finance and Economics Discussion Series, 2001-37, Federal Reserve Board of Governors, Washington D.C. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449-470. Miao, D. W.-C., (2013). Analysis of the discrete Ornstein-Uhlenbeck process caused by the tick size effect. Journal of Applied Probability 50, 1102–1106. Miao, D. W. C., Lin, X. C. S., & Chao, W. L. (2016). Computational analysis of a Markovian queueing system with geometric mean-reverting arrival process. Computers & Operations Research, 65, 111-124. Pasricha, P., Lu, X., & Zhu, S. P. (2021). A note on the calculation of default probabilities in ”Structural credit risk modeling with Hawkes jump−diffusion processes”. Journal of Computational and Applied Mathematics, 381, 113037. Pykhtin, M. (2003). Recovery rates: Unexpected recovery risk. RISK-LONDONRISK MAGAZINE LIMITED-, 16(8), 74-79 Renshaw, E. (1987). The discrete Uhlenbeck−Ornstein process. Journal of Applied Probability, 24(4), 908-917. Tang, D. Y., & Yan, H. (2010). Market conditions, default risk and credit spreads. Journal of Banking & Finance, 34(4), 743-753. Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2), 177-188. World Economic Forum (2023). Global Risks Report 2023. Retrieved from https://www.weforum.org/reports/global−risks−report−2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90608 | - |
| dc.description.abstract | 本研究將提出一個新的建模方法,用以評價可違約債券的價格與風險值估計。此方法的特點在於考量可違約債中利率、違約率、回收率間的非線性相依性,並允許他們的相關性與動態過程可為任意線性或非線性的設定形式,增加評價模型的設定彈性。本議題的研究意義在於他們間的相關性在實證上發現存在非線性的特徵,且此特徵將可能隨著日後國際間非預期的危機數量增加,而使得過往對債券持有期間內設定相關性為定值或線性關係的假設可信度下降。
本研究蒐集美國市場於2018年5月至2023年5月的股匯債市與主權違約交換報價等資料,證實非線性相依性的存在。首先是利率、違約率與回收率的有界性。第二是利率與違約率存在正斜率且凹口向上的非線性關係。同時,本研究發現除了利率,市場景氣狀況亦為影響違約率的重要因子。第三是違約率與回收率間具負斜率且凹口向上的函數關係。至今,有鑑於2023年全球風險報告書揭露不斷攀升的多領域脆弱度,各國政府恐將更頻繁的運用貨幣工具維持國內金融穩定,因此考量非線性相依性的必要性更顯重要。 本研究根據實證結果進行模型與參數的設定,如假使利率、違約率、回收率為兩個具均值回歸特性之狀態變量的仿射函數。基於可解析性的考量,本研究先透過動差與共變異數擬合的方法將狀態變量的隨機過程離散化,將其轉換為連續時間的馬可夫鏈,並藉以求得相應馬可夫鏈間狀態的轉移率。而由於本研究標的為可違約債,故再加入吸收態去捕捉進入違約狀態的可能。自此,本研究遂可運用馬可夫調整泊松過程去估計考量非線性相依性之可違約債券價格,並進一步預測未來的風險值。最後,數值分析發現,本研究所提出的非線性模型相較過往的線性模型傾向估計出較高的債券價格與較保守的風險估計。 | zh_TW |
| dc.description.abstract | Our research intends to propose a novel methodology to evaluate the price and measure the risks of defaultable bonds. The distinctive feature of this method is taking the nonlinear dependence among interest rates, default rates, and recovery rates into account, allowing their correlations and dynamics to be specified as arbitrary linear or nonlinear forms, thereby increasing the model’s flexibility. The significance of this research topic lies in the nonlinear characteristics among these rates found in this paper. With increasing unexpected shocks or crises, it leads to a decline in the credibility of previous fixed or linear relationship assumptions during the bond's holding period.
We obtain several insights concerning their relations via US market from May 2018 to May 2023. Three key findings are listed below. The first feature is the boundedness of rates. Second, there is a positive-slope, concave-upward nonlinear relation between interest and default rates. In addition, we found that not only interest rate, but the US market condition also influences default rate. Third, the relationship between default rate and recovery rate exhibits the negatively sloping with upward concavity patterns. Based on the Global Risks Report 2023, it cites pieces of evidence to show the increasing vulnerabilities across multiple domains and sound a warning of poly-crises. Hence, to cope with more shocks in the future, governments will utilize monetary tools more frequently, highlighting the importance of considering the nonlinear dependency. Our model setup and parameter settings are inspired by our empirical research and past literature. For instance, we assume that these three rates are the affine functions of two state variables with mean-reverting features. To maintain analytical tractability, we will discretise the stochastic processes of the state variables through moment and covariance matching approach, transforming them into two Continuous-Time Markov Chains with absorbing state. Finally, we employ the Markovian Modulated Poisson Process to estimate the price of defaultable bond and its VaR which consider the nonlinear dependencies. At last, the numerical analyses show that compared with the benchmark model, our nonlinear model with truncated dynamic of interest rates will predict a relatively higher ZCB price and more negative VaR. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:50:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:50:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgments i
Abstract iii 1 Introduction 1 2 Motivation and Problem Formulation 5 2.1 Literature Review 5 2.1.1 Pricing Model of the Defaultable Claims 5 2.1.2 Relation between Interest Rate and Default Rate 7 2.1.3 Relation between Default Rate and Recovery Rate 8 2.2 Empirical Study 10 2.2.1 Correlation between Interest Rate and Default Rate 11 2.2.2 Correlation between Default Rate and Recovery Rate 14 2.2.3 Boundedness of Interest Rate 16 2.3 Insights and Motivations Inspired from Preliminary Results 19 3 Proposed Model and Mathematical Analysis 21 3.1 Model Setup 21 3.2 Discretization of a 2D OU Process 23 3.3 Numerical Method of Bond Pricing 28 3.4 Estimation of Value at Risk 32 4 Numerical Results 35 4.1 Effects of Nonlinearity Relation among Rates on Bond Pricing and VaR 36 4.1.1 The Effect of Relation between rt and λt 36 4.1.2 The Effect of Relation between λt and ηt 38 4.2 Effects of Boundedness of rt on Bond Pricing and VaR 40 4.3 Effects of 2D OU Model Parameters on Bond Pricing and VaR 41 5 Conclusion 45 6 Appendix 55 6.1 R code for MMPP approaches 55 | - |
| dc.language.iso | en | - |
| dc.subject | 可違約債券 | zh_TW |
| dc.subject | 連續時間馬可夫鏈 | zh_TW |
| dc.subject | 風險值 | zh_TW |
| dc.subject | 縮減式模型 | zh_TW |
| dc.subject | 馬可夫調整泊松過程 | zh_TW |
| dc.subject | Value at Risk | en |
| dc.subject | Continuous-time Markov Chain | en |
| dc.subject | Reduced-form model | en |
| dc.subject | Defaultable bonds | en |
| dc.subject | Markovian Modulated Poisson Process | en |
| dc.title | 具非線性相依利率-違約率-回收率之可違約債券評價模型—評價演算法與風險分析 | zh_TW |
| dc.title | A Defaultable Bond Pricing Model with Nonlinear Dependency among Interest, Default, Recovery Rates—Numerical Methods for Bond Pricing and Risk Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 繆維中 | zh_TW |
| dc.contributor.coadvisor | Wei-Chung Miao | en |
| dc.contributor.oralexamcommittee | 李宗培;蔡偉澎 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Pei Lee;Wei-Pen Tsai | en |
| dc.subject.keyword | 可違約債券,縮減式模型,風險值,連續時間馬可夫鏈,馬可夫調整泊松過程, | zh_TW |
| dc.subject.keyword | Defaultable bonds,Reduced-form model,Value at Risk,Continuous-time Markov Chain,Markovian Modulated Poisson Process, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202301792 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-27 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
