請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘 | zh_TW |
| dc.contributor.advisor | Kuan-Ming Li | en |
| dc.contributor.author | 莊侑杰 | zh_TW |
| dc.contributor.author | You-Jie Chuang | en |
| dc.date.accessioned | 2023-10-03T16:48:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | [1] Hoda ElMaraghy, Laszlo Monostori, Guenther Schuh, and Waguih ElMaraghy, "Evolution and future of manufacturing systems," CIRP Annals, 70(2), pp. 635-658, 2021.
[2] Md Alam, "Artificial Intelligence Based Tool Condition Monitoring in Machining," PhD thesis, 2019. [3] M.C. Shaw, "Metal Cutting Principles" (2nd ed.), Oxford University Press, New York, 2005. [4] Dimla E. Dimla, "Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods," International Journal of Machine Tools and Manufacture, 40(8), pp. 1073-1098, 2000. [5] K. Jemielniak and P.J. Arrazola, "Application of AE and cutting force signals in tool condition monitoring in micro-milling," CIRP Journal of Manufacturing Science and Technology, 1(2), pp. 97-102, 2008. [6] Mohammad Malekian, Simon S. Park, and Martin B.G. Jun, "Tool wear monitoring of micro-milling operations," Journal of Materials Processing Technology, 209(10), pp. 4903-4914, 2009. [7] Roth, J. T., and Pandit, S. M., "Monitoring End-Mill Wear and Predicting Tool Failure Using Accelerometers," ASME Journal of Manufacturing Science and Engineering, 121(4), pp. 559-567, November 1, 1999. [8] Zhang, J.Z., and Chen, J.C., "Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system," International Journal of Advanced Manufacturing Technology, 39, pp. 118-128, 2008. [9] 林奕言, “銑削加工振動訊號前處理於刀具磨耗監控之研究,” 國立台灣大學機械工程學系碩士論文, 2020. [10] Wan-Hao Hsieh, Ming-Chyuan Lu, and Shean-Juinn Chiou, “Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling,” The International Journal of Advanced Manufacturing Technology, pp. 53-61, 2012. [11] M. Wang, J. Zhou, J. Gao, Z. Li, and E. Li, "Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions," IEEE Access, 8, pp. 140726-140735, 2020. [12] A. Gouarir, G. Martínez-Arellano, G. Terrazas, P. Benardos, and S. Ratchev, "In-process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis," Procedia CIRP, 77, pp. 501-504, 2018. [13] Dongdong Wang, Qingyang Liu, Dazhong Wu, and Liqiang Wang, "Meta domain generalization for smart manufacturing: Tool wear prediction with small data," Journal of Manufacturing Systems, 62, pp. 441-449, 2022. [14] 林冠良, “元學習用於銑削加工中刀具磨耗偵測,” 國立台灣大學機械工程學系碩士論文, 2021. [15] Kai Li, Mingsong Chen, Yongcheng Lin, Zhou Li, Xianshi Jia, and Bin Li, "A novel adversarial domain adaptation transfer learning method for tool wear state prediction," Knowledge-Based Systems, 254, 109537, 2022. [16] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, et al., "Domain-adversarial training of neural networks," Journal of Machine Learning Research, 17(1), pp. 2096–2030, 2016. [17] 蔡乙陞,“銑削加工振動訊號應用於刀具磨耗監控之研究,” 國立台灣大學機械工程學系碩士論文, 2019. [18] 邱雅琳, “等切削力控制系統動態特性建立之研究,” 國立台灣大學機械工程學系碩士論文, 2017. [19] D. E. Hinkle, W. Wiersma, and S. G. Jurs, "Applied Statistics for the Behavioral Sciences," 5th ed., Houghton Mifflin, 2003. [20] Farahani A, Voghoei S, Rasheed K, Arabnia HR, "A brief review of domain adaptation," Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020, Springer, Cham, Switzerland, pp. 877–894, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90600 | - |
| dc.description.abstract | 近年來,製造業對於預測工具機故障和刀具磨耗的模型開發越發重視。傳統的刀具磨耗監測系統研究通常基於已知的切削條件(如轉速和進給)建立模型,但這些模型只能對特定切削條件下的測量數據具有良好的辨識性能。對於變切削條件的刀具磨耗監測,如在材料硬度不同的情況下,切削條件的差異會對磨耗產生影響,傳統方法往往難以有效應對。因此,本研究採用領域自適應的概念,以神經網絡模型為基礎,用於不同硬度材料下的刀具磨耗監測。
研究中利用振動訊號和主軸電流訊號作為預測刀具磨耗的訊號源。採用安裝方便、成本低廉且信噪比高的加速規進行振動訊號擷取,並使用從工具機收集的主軸電流訊號,因其與切削力高度相關。透過對抗性訓練方法,建立的領域自適應模型能夠有效預測刀具磨耗,驗證了該模型的可行性。進一步,通過結合與目標領域相似的切削數據進行訓練,模型的性能得到提升。此外,雖理論上多樣數據可提升泛化,但當源領域中的部分數據與目標領域數據差異大時,效果可能不佳。源領域選擇的相似性對模型性能是關鍵。適當微調和組合源領域數據能增強預測準確性。在減少特徵工程不進行數據標準化下,領域自適應依然能縮小源領域與目標領域特徵分布的差距。本研究間接證明領域自適應與特徵工程對於模型泛化性有相同之功效,對於已進行有效的資料前處理與特徵工程之數據,用於不同硬度材料下的刀具磨耗監測,採用領域自適應,準確度僅能小幅提高。 | zh_TW |
| dc.description.abstract | In recent years, the manufacturing industry has increasingly focused on the development of predictive models for machine failure and tool wear. Traditional research on tool wear monitoring systems typically relies on established cutting conditions (such as spindle speed and feed rate) to build models that only exhibit good recognition performance for specific conditions. However, for tool wear monitoring under variable cutting conditions, especially when dealing with different material hardness, traditional methods often struggle to be effective. Therefore, in this study, we utilize the concept of domain adaptation to construct a neural network model for tool wear monitoring in different material hardness scenarios.
The research uses vibration signals and spindle current signals as the signal sources for predicting tool wear. Vibration signals are captured using accelerometers, known for their easy installation, cost-effectiveness, and high signal-to-noise ratio. Additionally, spindle current signals from the machine tool are utilized, given their strong positive correlation with cutting forces. By employing adversarial training methods, the domain adaptation model effectively predicts tool wear, validating the feasibility of this model. Furthermore, by adding cutting data similar to the target domain for training, the performance of the model is enhanced. In theory, diverse data can improve model generalization. However, the effectiveness may be reduced when there is a significant discrepancy between some data in the source domain and the target domain data. The similarity in the choice of source domain is crucial to the performance of the model. Proper fine-tuning and combining of source domain data can enhance the prediction accuracy. Even when reducing feature engineering and without standardization, domain adaptation can still work to minimize the discrepancy in feature distribution between the source and target domains. This research indirectly shows that domain adaptation and feature engineering have similar effects on model generalization. When used for tool wear monitoring under different material hardness, domain adaptation results in only a slight improvement in accuracy for data that has undergone effective preprocessing and feature engineering. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:48:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:48:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 XIII 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究架構 4 第2章 文獻回顧 5 2.1 刀具磨耗之訊號監控 5 2.2 刀具磨耗監控之模型 7 2.3 小結 9 第3章 研究方法 10 3.1 研究架構 10 3.2 訊號擷取與分析 12 3.2.1 加速規之裝設 12 3.2.2 主軸電流與加工位置訊號擷取 12 3.2.3 奈奎斯特定理(Nyquist Theorem) 13 3.2.4 訊號前處理 14 3.2.5 訊號頻域轉換 18 3.2.6 移動窗口方法(Moving Window Method) 20 3.3 領域自適應模型 21 3.3.1 領域自適應概念 21 3.3.2 領域自適應模型架構 21 3.3.3 超參數設定 25 3.4 特徵工程 26 3.4.1 特徵集合 26 3.4.2 特徵標準化 29 3.5 刀具磨耗之分析 30 3.5.1 刀具磨耗量測 30 3.5.2 刀具磨耗預測誤差 31 第4章 實驗設備與規劃 32 4.1 實驗架構 32 4.2 實驗設備 33 4.2.1 工具機 (Machining Center) 33 4.2.2 刀具 (Tool) 34 4.2.3 工件 (Workpiece) 34 4.2.4 治具 (Fixture) 35 4.2.5 三軸加速規 (Accelerometer) 36 4.2.6 磁座 (Magnetic Mounting Base) 37 4.2.7 振動輸入模組 (Input Module) 38 4.2.8 CompactDAQ 機箱 (Chassis) 39 4.2.9 動力計 (Dynamometer) 39 4.2.10 訊號放大器 (Amplifier) 40 4.2.11 訊號擷取卡 (Data Acquisition Card, DAQ) 41 4.2.12 CCD 相機 (Charge-coupled Device Camera) 42 4.2.13 扭力板手 (Torque Wrench) 42 4.2.14 槓桿式量表 (Lever Type Dial Gauge) 43 4.3 實驗規劃 44 4.3.1 銑削實驗流程 44 4.3.2 訊號分析流程 48 第5章 實驗結果與討論 51 5.1 探索模型性能範圍:上限、下限和提升空間 51 5.2 領域自適應模型應用 57 5.2.1 源領域僅含條件1之模型( DANN_1 ) 57 5.2.2 源領域含條件1、 3之模型 ( DANN_1and3與DANN_1to3 ) 60 5.2.3 源領域包含條件3之模型( DANN_3 ) 66 5.2.4 小結 69 5.3 領域自適應模型應用-減少特徵工程 71 5.3.1 減少特徵工程步驟 71 5.3.2 訓練結果分析 72 5.3.3 小結 79 第6章 結論與未來展望 80 6.1 總結 80 6.2 未來展望 81 參考文獻 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 領域自適應 | zh_TW |
| dc.subject | 振動訊號 | zh_TW |
| dc.subject | 加速規 | zh_TW |
| dc.subject | 刀具磨耗 | zh_TW |
| dc.subject | 銑削 | zh_TW |
| dc.subject | accelerometers | en |
| dc.subject | vibration signal | en |
| dc.subject | milling | en |
| dc.subject | domain adaptation | en |
| dc.subject | tool wear | en |
| dc.title | 領域自適應於銑削加工中刀具磨耗偵測 | zh_TW |
| dc.title | Domain Adaptation for Tool Wear Monitoring in Milling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 盧銘詮;蔡曜陽 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Chyuan Lu;Yao-Yang Tsai | en |
| dc.subject.keyword | 振動訊號,加速規,刀具磨耗,領域自適應,銑削, | zh_TW |
| dc.subject.keyword | vibration signal,accelerometers,tool wear,domain adaptation,milling, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202303293 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2026-12-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
