請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90598完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林沛群 | zh_TW |
| dc.contributor.advisor | Pei-Chun Lin | en |
| dc.contributor.author | 王華豫 | zh_TW |
| dc.contributor.author | Hua-Yu Wang | en |
| dc.date.accessioned | 2023-10-03T16:47:58Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] P. Biswal and P. K. Mohanty, "Development of quadruped walking robots: A review," Ain Shams Engineering Journal, vol. 12, no. 2, pp. 2017-2031, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.asej.2020.11.005.
[2] S. Hirose, H. Kikuchi, and Y. Umetani, "The standard circular gait of a quadruped walking vehicle," Advanced Robotics, vol. 1, no. 2, pp. 143-164, 1986. [3] S. Kitano, K. Hasegawa, and K. Maekawa, "Evidence for interspecific hybridization between native white‐spotted charr Salvelinus leucomaenis and non‐native brown trout Salmo trutta on Hokkaido Island, Japan," Journal of Fish Biology, vol. 74, no. 2, pp. 467-473, 2009. [4] S. Kitano, S. Hirose, G. Endo, and E. F. Fukushima, "Development of lightweight sprawling-type quadruped robot TITAN-XIII and its dynamic walking," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 6025-6030. [5] I. Havoutis, J. Ortiz, S. Bazeille, V. Barasuol, C. Semini, and D. G. Caldwell, "Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ)," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 6052-6057. [6] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell, "Design of HyQ–a hydraulically and electrically actuated quadruped robot," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, no. 6, pp. 831-849, 2011. [7] C. Semini, "HyQ-design and development of a hydraulically actuated quadruped robot," Doctor of Philosophy (Ph. D.), University of Genoa, Italy, 2010. [8] H. Khan et al., "Development of the lightweight hydraulic quadruped robot—MiniHyQ," in 2015 IEEE international conference on technologies for practical robot applications (TePRA), 2015: IEEE, pp. 1-6. [9] C. Semini et al., "Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max," IEEE/Asme Transactions on Mechatronics, vol. 22, no. 2, pp. 635-646, 2016. [10] IIT. "HyQReal." https://dls.iit.it/web/dynamic-legged-systems/hyqreal (accessed 2023). [11] M. Hutter et al., "Anymal-toward legged robots for harsh environments," Advanced Robotics, vol. 31, no. 17, pp. 918-931, 2017. [12] P. Fankhauser and M. Hutter, "Anymal: a unique quadruped robot conquering harsh environments," Research Features, no. 126, pp. 54-57, 2018. [13] M. Hutter et al., "Anymal-a highly mobile and dynamic quadrupedal robot," in 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2016: IEEE, pp. 38-44. [14] F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter, "Perceptive locomotion in rough terrain–online foothold optimization," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5370-5376, 2020. [15] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, "Deepgait: Planning and control of quadrupedal gaits using deep reinforcement learning," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3699-3706, 2020. [16] J. Wang et al., "Automatic gait pattern selection for legged robots," in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020: IEEE, pp. 3990-3997. [17] F. Shi et al., "Circus anymal: A quadruped learning dexterous manipulation with its limbs," in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: IEEE, pp. 2316-2323. [18] D. J. Hyun, S. Seok, J. Lee, and S. Kim, "High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah," The International Journal of Robotics Research, vol. 33, no. 11, pp. 1417-1445, 2014. [19] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, "Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot," in 2013 IEEE International Conference on Robotics and Automation, 2013: IEEE, pp. 3307-3312. [20] H.-W. Park, S. Park, and S. Kim, "Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3d running of mit cheetah 2," in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015: IEEE, pp. 5163-5170. [21] P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim, "Proprioceptive actuator design in the mit cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots," Ieee transactions on robotics, vol. 33, no. 3, pp. 509-522, 2017. [22] Q. Nguyen, M. J. Powell, B. Katz, J. Di Carlo, and S. Kim, "Optimized jumping on the mit cheetah 3 robot," in 2019 International Conference on Robotics and Automation (ICRA), 2019: IEEE, pp. 7448-7454. [23] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, "Mit cheetah 3: Design and control of a robust, dynamic quadruped robot," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 2245-2252. [24] B. Katz, J. Di Carlo, and S. Kim, "Mini cheetah: A platform for pushing the limits of dynamic quadruped control," in 2019 international conference on robotics and automation (ICRA), 2019: IEEE, pp. 6295-6301. [25] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, "Bigdog, the rough-terrain quadruped robot," IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10822-10825, 2008. [26] B. Dynamics. ""SPOT® Automate sensing and inspection, capture limitless data, and explore without boundaries."." https://www.bostondynamics.com/products/spot (accessed 2023). [27] G. Kenneally and D. E. Koditschek, "Leg design for energy management in an electromechanical robot," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: IEEE, pp. 5712-5718. [28] F. Michaud et al., "Multi-modal locomotion robotic platform using leg-track-wheel articulations," Autonomous Robots, vol. 18, pp. 137-156, 2005. [29] T. Tanaka and S. Hirose, "Development of leg-wheel hybrid quadruped “AirHopper” design of powerful light-weight leg with wheel," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: IEEE, pp. 3890-3895. [30] N. Kashiri et al., "Centauro: A hybrid locomotion and high power resilient manipulation platform," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1595-1602, 2019. [31] T. Klamt et al., "Supervised autonomous locomotion and manipulation for disaster response with a centaur-like robot," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 1-8. [32] T. Klamt and S. Behnke, "Anytime hybrid driving-stepping locomotion planning," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017: IEEE, pp. 4444-4451. [33] G. Endo and S. Hirose, "Study on Roller-Walker—Adaptation of Characteristics of the propulsion by a Leg Trajectory—," Journal of the Robotics Society of Japan, vol. 26, no. 6, pp. 691-698, 2008. [34] K. Turker, I. Sharf, and M. Trentini, "Step negotiation with wheel traction: a strategy for a wheel-legged robot," in 2012 IEEE International Conference on Robotics and Automation, 2012: IEEE, pp. 1168-1174. [35] J. A. Smith, I. Sharf, and M. Trentini, "PAW: a hybrid wheeled-leg robot," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006: IEEE, pp. 4043-4048. [36] C. Grand, F. BenAmar, F. Plumet, and P. Bidaud, "Decoupled control of posture and trajectory of the hybrid wheel-legged robot Hylos," in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, 2004, vol. 5: IEEE, pp. 5111-5116. [37] H. Adachi and N. Koyachi, "Development of a leg-wheel hybrid mobile robot and its step-passing algorithm," in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), 2001, vol. 2: IEEE, pp. 728-733. [38] M. Bjelonic, P. K. Sankar, C. D. Bellicoso, H. Vallery, and M. Hutter, "Rolling in the deep–hybrid locomotion for wheeled-legged robots using online trajectory optimization," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3626-3633, 2020. [39] V. S. Medeiros, E. Jelavic, M. Bjelonic, R. Siegwart, M. A. Meggiolaro, and M. Hutter, "Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain," IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4172-4179, 2020. [40] M. Bjelonic et al., "Keep rollin’—whole-body motion control and planning for wheeled quadrupedal robots," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2116-2123, 2019. [41] T. Okada, W. T. Botelho, and T. Shimizu, "Motion analysis with experimental verification of the hybrid robot PEOPLER-II for reversible switch between walk and roll on demand," The International Journal of Robotics Research, vol. 29, no. 9, pp. 1199-1221, 2010. [42] Z. Wei, G. Song, G. Qiao, Y. Zhang, and H. Sun, "Design and implementation of a leg–wheel robot: transleg," Journal of Mechanisms and Robotics, vol. 9, no. 5, p. 051001, 2017. [43] S. Guccione and G. Muscato, "The wheeleg robot," IEEE Robotics & Automation Magazine, vol. 10, no. 4, pp. 33-43, 2003. [44] R. Cao, J. Gu, C. Yu, and A. Rosendo, "Omniwheg: An omnidirectional wheel-leg transformable robot," in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022: IEEE, pp. 5626-5631. [45] Y.-S. Kim, G.-P. Jung, H. Kim, K.-J. Cho, and C.-N. Chu, "Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels," IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1487-1498, 2014. [46] Y.-S. Kim, G.-P. Jung, H. Kim, K.-J. Cho, and C.-N. Chu, "Wheel transformer: A miniaturized terrain adaptive robot with passively transformed wheels," in 2013 IEEE International Conference on Robotics and Automation, 2013: IEEE, pp. 5625-5630. [47] S.-C. Chen, K.-J. Huang, W.-H. Chen, S.-Y. Shen, C.-H. Li, and P.-C. Lin, "Quattroped: a leg--wheel transformable robot," IEEE/ASME Transactions On Mechatronics, vol. 19, no. 2, pp. 730-742, 2013. [48] W.-H. Chen, H.-S. Lin, and P.-C. Lin, "TurboQuad: A leg-wheel transformable robot using bio-inspired control," in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014: IEEE, pp. 2090-2090. [49] S.-C. Chen, K. J. Huang, C.-H. Li, and P.-C. Lin, "Trajectory planning for stair climbing in the leg-wheel hybrid mobile robot quattroped," in 2011 IEEE International Conference on Robotics and Automation, 2011: IEEE, pp. 1229-1234. [50] U. Saranli, M. Buehler, and D. E. Koditschek, "RHex: A simple and highly mobile hexapod robot," The International Journal of Robotics Research, vol. 20, no. 7, pp. 616-631, 2001. [51] W.-H. Chen, H.-S. Lin, Y.-M. Lin, and P.-C. Lin, "TurboQuad: A novel leg–wheel transformable robot with smooth and fast behavioral transformations," IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1025-1040, 2017. [52] 陳為熙, "輪腳快速變換平台及其仿生控制架構," 工學院機械工程學系, 國立臺灣大學, 2013. [53] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, "Fast, robust quadruped locomotion over challenging terrain," in 2010 IEEE International Conference on Robotics and Automation, 2010: IEEE, pp. 2665-2670. [54] A. W. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini, "Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on challenging terrain," in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015: IEEE, pp. 5148-5154. [55] R. B. McGhee and A. A. Frank, "On the stability properties of quadruped creeping gaits," Mathematical Biosciences, vol. 3, pp. 331-351, 1968. [56] R. B. McGhee and G. I. Iswandhi, "Adaptive locomotion of a multilegged robot over rough terrain," IEEE transactions on systems, man, and cybernetics, vol. 9, no. 4, pp. 176-182, 1979. [57] S. Sreenivasan and B. Wilcox, "Stability and traction control of an actively actuated micro‐rover," Journal of robotic systems, vol. 11, no. 6, pp. 487-502, 1994. [58] J. Davidson and G. Schweitzer, "A mechanics-based computer algorithm for displaying the margin of static stability in four-legged vehicles," 1990. [59] D. Messuri and C. Klein, "Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion," IEEE Journal on Robotics and Automation, vol. 1, no. 3, pp. 132-141, 1985. [60] A. Ghasempoor and N. Sepehri, "A measure of machine stability for moving base manipulators," in Proceedings of 1995 IEEE International Conference on Robotics and Automation, 1995, vol. 3: IEEE, pp. 2249-2254. [61] 陳宣妤, "具快速變換與跳躍能力之輪腳模組開發," 工學院機械工程學系, 國立臺灣大學, 2020. [62] 沈宣諭, "輪腳雙模式運動平台之研發," 工學院機械工程學系, 國立臺灣大學, 2009. [63] 陳亮傑, "以中樞模式發生器結合踏點力最佳畫進行四足機器人之步態生成控制與變換," 工學院機械工程學系, 國立臺灣大學, 2022. [64] 王霆皓, "以環境RGBD資訊進行輪繳付和機器人之地形判定導航與步態選擇," 工學院機械工程學系, 國立臺灣大學, 2018. [65] R. N. Jazar, Vehicle dynamics. Springer, 2008. [66] R. L. Norton, "Kinematics and dynamics of machinery," (No Title), 2009. [67] A.-N. Sharkawy, "Minimum Jerk Trajectory Generation for Straight and Curved Movements: Mathematical Analysis," arXiv preprint arXiv:2102.07459, 2021. [68] G.-R. Tack, J. Choi, J. Yi, and C. Kim, "Relationship between jerk cost function and energy consumption during walking," in World Congress on Medical Physics and Biomedical Engineering 2006: August 27–September 1, 2006 COEX Seoul, Korea “Imaging the Future Medicine”, 2007: Springer, pp. 2917-2918. [69] E. Papadopoulos and D. A. Rey, "The force-angle measure of tipover stability margin for mobile manipulators," Vehicle System Dynamics, vol. 33, no. 1, pp. 29-48, 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90598 | - |
| dc.description.abstract | 本文主要探討新型輪腳複合式平台於輪腳轉換時之軌跡規劃以及穩定度分析,新型輪腳複合式平台搭載之輪腳機構為五連桿內接七連桿的雙自由度機構,能夠在輪模式以輪機構移動並且於腳模式使用一般四足機器人常見之步態移動,但複雜的構型也使其在運動學計算上較為困難,為了使機器人能夠於兩種模式中順暢且平穩的切換,本研究首先離線規劃單足之輪腳轉換軌跡,以平穩且有效率切換為目的,藉由順向運動學大量生成軌跡後由成本函數篩選出最符合要求之軌跡。
在機器人的模式切換上,輪模式與腳模式之作動範圍並不相同,進行模式切換需對齊各輪足機構之相位,本研究提出一種輪腳轉換規劃演算法,分配各腳在輪腳轉換過程中的行為以及軌跡,在持續前進的同時完成各輪足機構之相位對齊,以完成快速且平穩的轉換,過程中機器人並不會產生轉向以及打滑的多餘動態,並且演算法內之參數可依照機器人所處情境更改,以增加其應用彈性。本研究同時使用力角穩定性分析判斷機器人於輪腳轉換過程之穩定性,並且以此進行踏點以及機身動態的修改,使機器人順暢完成轉換,並且平穩進入中樞模式產生器以銜接腳模式步態。最後,以模擬軟體以及實驗驗證所提出之輪腳轉換規劃可行性以及應用範圍。 | zh_TW |
| dc.description.abstract | This study discusses trajectory planning and stability analysis during wheel-leg transformation of a novel wheel-leg transformable robot. The platform is equipped with a five-bar linkages-based mechanism that is internally connected to a seven-bar linkage, providing 2 degrees of freedom. It can move in wheel mode using the wheeled mechanism and adopt common quadruped robot gaits in legged mode. However, its complex configuration poses challenges in kinematic calculations. To enable smooth and stable switching between the two modes, this study first offline plans the trajectory for single-leg wheel-to-leg transformation. The objective is to achieve smooth and efficient switching, and a large number of trajectories are generated through forward kinematics. These trajectories are then filtered based on a cost function to select the most suitable ones that meet the requirements.
In the context of mode switching in robots, the operating ranges of the wheeled mode and legged mode are not the same. Aligning the phases of each wheel-leg mechanism is necessary for mode switching. This study proposes a wheel-leg transformation planning algorithm that assigns behaviors and trajectories to each leg during the transformation process. The algorithm ensures the alignment of the wheel-leg mechanisms' phases while the robot continues to move forward, enabling fast and smooth transformations. The algorithm avoids unnecessary dynamics such as steering and slipping. Moreover, the parameters within the algorithm can be adjusted according to the robot's specific situation, increasing its application flexibility. This study also employs a stability analysis using force-angle stability measurement to assess the robot's stability during the wheel-to-leg transformation. Based on the analysis results, adjustments are made to the footholds and body dynamics, ensuring the robot completes the transformation smoothly and seamlessly enters the central pattern generator to connect with legged mode gaits. Finally, the proposed wheel-leg transformation planning is validated through simulations and experiments, demonstrating its feasibility and applicability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:47:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:47:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 x 表目錄 xv 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 四足機器人回顧 3 1.3.2 複合式輪腳機器人回顧 7 1.3.3 機器人穩定性評估方法回顧 11 1.4 貢獻 13 1.5 論文架構 14 第二章 實驗平台 16 2.1 前言 16 2.2 輪腳機構設計 16 2.2.1 輪腳機構設計回顧 16 2.2.2 金屬桿件改良 18 2.2.3 輪框改良 22 2.3 機身設計 25 2.3.1 機身設計回顧 25 2.3.2 輪足驅動模組 27 2.3.3 機身結構設計 29 2.3.4 轉向機構 33 2.4 機電系統 38 2.5 機器人整體架構 39 第三章 輪腳轉換規劃 41 3.1 前言 41 3.2 運動學回顧 41 3.2.1 座標定義 41 3.2.2 運動學分析 44 3.3 單足軌跡規劃 47 3.3.1 單足轉換策略發想 47 3.3.2 軌跡生成 50 3.3.3 成本函數 (cost function) 54 3.4 輪腳轉換演算法 55 3.4.1 機器人輪腳轉換策略發想 55 3.4.2 輪腳轉換演算法介紹 59 3.4.3 混合模式足步規劃 63 3.4.4 進入中樞模式發生器 65 3.4.5 腳輪轉換 68 第四章 穩定性分析 70 4.1 前言 70 4.2 力角穩定性分析 70 4.2.1 力角穩定性分析介紹 70 4.2.2 力角穩定性計算 71 4.3 穩定性修正 77 4.3.1 地形修正 78 4.3.2 加速度修正 81 4.4 輪腳慣性影響 82 第五章 實驗驗證與探討 85 5.1 前言 85 5.2 軌跡效率驗證 86 5.3 輪腳轉換可行性驗證實驗 88 5.3.1 不同起始姿態之輪腳轉換驗證 88 5.3.2 不同速度與不同高度之輪腳轉換驗證 93 5.4 輪腳轉換於坡度上之驗證 96 5.5 輪腳轉換整合實驗 100 第六章 結論與未來展望 105 6.1 結論 105 6.2 未來展望 106 REFERENCES 107 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 仿生機器人 | zh_TW |
| dc.subject | 軌跡規劃 | zh_TW |
| dc.subject | 輪腳複合模組 | zh_TW |
| dc.subject | 踏點規劃 | zh_TW |
| dc.subject | 穩定性分析 | zh_TW |
| dc.subject | leg-wheel module | en |
| dc.subject | trajectory planning | en |
| dc.subject | foothold planning | en |
| dc.subject | Bio-inspired robot | en |
| dc.subject | stability analysis | en |
| dc.title | 輪腳複合機器人之穩定輪腳轉換策略 | zh_TW |
| dc.title | A Stable Wheel-to-Leg Transformation Strategy in a Leg-Wheel Transformable Robot | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 連豊力;顏炳郎 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-Li Lian;Ping-Lang Yen | en |
| dc.subject.keyword | 仿生機器人,輪腳複合模組,軌跡規劃,踏點規劃,穩定性分析, | zh_TW |
| dc.subject.keyword | Bio-inspired robot,leg-wheel module,trajectory planning,foothold planning,stability analysis, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202303683 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
