請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90597
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳復國 | zh_TW |
dc.contributor.advisor | Fuh-Kuo Chen | en |
dc.contributor.author | 蔣郁欣 | zh_TW |
dc.contributor.author | Yu-Hsin Chiang | en |
dc.date.accessioned | 2023-10-03T16:47:42Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | T. Inoue,M. Suzuki, T. Okabe, and Y. Matsui, “Development of Advanced Electric Resistance Welding (ERW) Linepipe “Mighty SeamTM” with High Quality Weld Seam Suitable for Extra-Low Temperature Services”, JFE Technical Report, No. 18, pp. 18-22, 2013.
侯禹帆,高頻感應焊接製管分析模型與製程設計之研究,國立台灣大學機械工程研究所碩士論文,2022。 O’Brien, Welding Handbook 9th edition, vol. 3, American Welding Society, Miami USA, 2007. 陳冠呈,高頻電阻焊接高強度鋼管製程之研究,國立台灣大學機械工程研究所碩士論文,2019。 李馨卉,輥軋成形高頻感應焊管全線製程之研究,國立台灣大學機械工程研究所碩士論文,2021。 F. Heislitz, H. Livatyali, and M.A. Ahmetoglu, “Simulation of Roll Forming Process with the 3-D FEM Code PAM-STAMP”, Journal of Material Processing Technology, Vol. 59, pp. 59-67, 1996. S. Hong, S. Lee, and N. Kim, “A Parametric Study on Forming Length in Roll Forming”, Journal of Materials Processing Technology, vol. 113, pp. 774-778, 2001. S.J. Jong, “Simulation and Optimization of the Cold Roll‐Forming Process,” NUMIFORM 2004-Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, Vol.712. No. 1, pp. 452-457, 2004. Z. W. Han, C. Liu, W. P. Lu, and L. Q. Ren, “Simulation of a Multi-stand Roll Forming Process for Thick Channel Section”, Journal of Materials Processing Technology, vol. 127, pp. 382-387, 2002. Z. W. Han, C. Liu, W. P. Lu, L. Q. Ren, and J. Tong, “Spline Finite Strip Analysis of Forming Parameters in Roll Forming a Channel Section”, Journal of Materials Processing Technology, vol.159, pp. 383-388, 2005. 邱黃正凱,管材機械性質與液壓成形製程分析, 國立台灣大學機械工程研究所碩士論文,2005。 M.S. Tehrani, P. Hartley, H.M. Naeini, and H. Khademizadeh, “Localised Edge Buckling in Cold Roll-Forming of Symmetric Channel Section”, Thin-Walled Structures, Vol. 44, pp. 184-196, 2006. M.S. Tehrani, H.M. Naeini, P. Hartley, and H.Khademizadeh, “Localized Edge Buckling in Cold Roll-Forming of Circular Tube Section”, Journal of Materials Processing Technology, Vol. 177, No. 1-3, pp. 617-620, 2006. Q.V. Bui, and J.P. Ponthot, “Numerical Simulation of Cold Roll-Forming Processes”, Journal of Materials Processing Technology, Vol. 202, pp. 275-282, 2008. P. Groche, P. Beiter, and M. Henkelmann, “Prediction and Inline Compensation of Springback in Roll Forming of High and Ultra-high Strength Steels”, Production Engineering, vol. 2, pp. 401-407, 2008. S. K. Panthi, N. Ramakrishnan, M. Ahmed, S. S. Singh, and, M. D. Goel, “Finite Element Analysis of Sheet Metal Bending Process to Predict the Springback”, Materials , and Design, 31(2), 657-662, 2009. G. Zeng, S.H. Li, Z.Q. Yu , and X.M. Lai, “Optimization Design of Roll Profiles for Cold Roll Forming Based on Response Surface Method”, Materials , and Design, vol. 30, pp. 1930-1938, 2009. J. Paralikas, K. Salonitis, and G. Chryssolouris, “Investigation of the Effects of Main Roll Forming Process Parameters on Quality for a V-section Profile from AHSS”, The International Journal of Advanced Manufacturing Technology, vol. 44, pp. 223-237, 2009. J. Paralikas, K. Salonitis, and G. Chryssolouris, “Optimization of Roll Forming Process Parameters—a Semi-Empirical Approach”, The International Journal of Advanced Manufacturing Technology, vol. 47, pp. 1041-1052, 2010. L. Marretta, G. Ingarao, and R. Di Lorenzo,“Design of Sheet Stamping Operations to Control Springback and Thinning: A Multi-Objective Stochastic Optimization Approach”, International Journal of Mechanical Sciences, 52(7), 914-927, 2010. M. Oh, M. K. Lee, and N. Kim, “Robust Design of Roll Formed Slide Rail Using Response Surface Method”, Journal of mechanical science and technology, 24, 2545-2553, 2010. A. Abvabi, B. Rolfe, J. Larranaga, L. Glados, C. Yang, and M.Weiss, “Using the Solid-Shell Element to Model the Roll Forming of Large Radii Profiles”, Steel Research Journal: Proceedings of The 14th International Conference on Metal Forming, Wiley, pp. 711-714,2012. J. H. Wiebenga, M. Weiss, B. Rolfe, and A. H. van den Boogaard, “A Numerical Approach to Robust In-Line Control of Roll Forming Processes”, Steel Research International, pp. 727-730, 2012. J. H. Wiebenga, M. Weiss, B. Rolfe, and A. H. van den Boogaard, “Product Defect Compensation by Robust Optimization of a Cold Roll Forming Process”, Journal of Materials Processing Technology, vol. 213, pp. 978-986, 2013. W. Kang, Y. Zhao, W. Yu, S. Wang, Y. Ma, and P. Yan, “Numerical Simulation and Parameters Analysis for Roll Forming of Martensitic Steel MS980”, Procedia Engineering, vol. 81, pp. 251-256, 2014. M. M. Kasaei, H. M. Naeini, R. A. Tafti, and M. S. Tehrani, “Prediction of Maximum Initial Strip Width in the Cage Roll Forming Process of ERW Tubes Using Edge Buckling Criterion”, Journal of Materials Processing Technology, vol. 214, pp. 190-199, 2014. B. Abeyrathna, B. Rolfe, P. Hodgson, and M. Weiss, “A First Step Towards a Simple In-Line Shape Compensation Routine for the Roll Forming of High Strength Steel”, International Journal of Material Forming, pp. 1-12, 2015. R. Safdarian, and H. M. Naeini, “The Effects of Forming Parameters on the Cold Roll Forming of Channel Section”, Thin-Walled Structures, vol. 92, pp. 130-136, 2015. 曾俊傑,輥軋成形技術應用於製管製程之研究,國立台灣大學機械工程研究所碩士論文,2015。 W. Y. Chen, J. M. Jiang, D. Y. Lia, T. X. Zoua, and Y. H. Peng, “Flower Pattern and Roll Positioning Design for the Cage Roll Forming Process of ERW Pipes”, Journal of Materials Processing Technology, Vol. 264, p.p. 295-312, 2019. L. Qiu, S. Zhang, Z. Wang, X. Hu, and X. Liu, “A Robust Optimization Design Method for Sheet Metal Roll Forming and its Application in Roll Forming Circular Cross-Section Tube”, The International Journal of Advanced Manufacturing Technology, vol. 103, pp. 2903-2916, 2019. J. J. Cheng, J. G. Cao, Q. F. Zhao, J. Liu, N. Yu, and R. G. Zhao, “A Novel Approach to Springback Control of High-Strength Steel in Cold Roll Forming”, The International Journal of Advanced Manufacturing Technology, 107, 1793-1804, 2020. B. Shirani Bidabadi, H. Moslemi Naeini, R. Safdarian, and H. Barghikar, “Investigation of Over-Bending Defect in the Cold Roll Forming of U-Channel Section Using Experimental and Numerical Methods”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 236, pp. 1380-1392, 2022. J. Wright, “Principles of High Frequency Induction Tube Welding”, Electronic Heating Equipment, Inc., Washington USA, 1997. A. Konieczny, X.M. Chen, D.A. Witmer, M.F. Shi, Y. Hayashida, and Y. Omiya, “Hydroforming Performance of Laser Welded and Electric Resistance Welded High Strength Steel Tubes”, SAE Technical Paper, pp.2004-01-0830. 2004. K.A. Babakri, “Improvements in Flattening Test Performance in High Frequency Induction Welded Steel Pipe Mill”, Journal of Materials Processing Technology, Vol. 210, pp. 2171–2177, 2010. H.J. Kim, and S.K. Youn, “Three Dimensional Analysis of High Frequency Induction Welding of Steel Pipes with Impeder”, Journal of Manufacturing Science and Engineering, Vol.130, No.3, 2008. Y. Han, E. L. Yu, Y. Fan, and Y. Zhao, “Effects of Opening Angle on Temperature Distribution of HFIW Pipe”, 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, China IEEE, 2010. Y. Han, and E. L. Yu, “Numerical Analysis of a High-Frequency Induction Welded Pipe”, Welding Journal, Vol. 91, pp. 270-277, 2012. А. Nikanorov, E. Baake, H. Brauer, and C. Weil, “Approaches for Numerical Simulation of High Frequency Tube Welding Process”, International Conference on Heating by Electromagnetic Sources, 2013. X. Fu, B. Wang, X. Tang, H. Ji, and X. Zhu, “Study on Induction Heating of Workpiece before Gear Rolling Process with Different Coil Structures”, Applied Thermal Engineering, 114, 1-9, 2017. M. Ghaffarpour, D. Akbari, H. Moslemi Naeeni, and S. Ghanbari, “Improvement of the Joint Quality in the High-Frequency Induction Welding of Pipes by Edge Modification”, Weld World., Vol. 63, pp.1561–1572, 2019. M. Ghaffarpour, D. Akbari, and H.M. Naeini, “Investigation on the Effects of the Joint Type on the Driven Out Bead in the Welded Pipes Produced by High-Frequency Induction Welding”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. Vol. 235, pp.597–612, 2020. C. Kang, C. Shi, Z. Liu, Z. Liu, X. Jiang, S. Chen, and C. Ma, “Research on the Optimization of Welding Parameters in High-Frequency Induction Welding Pipeline”, Journal of Manufacturing Processes, Vol.59, pp. 772–790, 2020. C. Egger, M. Lüchinger, M. Schreiner, and W. Tillmann, “Numerical Simulation of Tube Manufacturing Consisting of Roll Forming and High-Frequency Induction Welding”, Materials, vol.15, 2022. S. Gao, Y. Li, L. Yang, and W. Qiu, “Microstructure and Mechanical Properties of Laser-Welded Dissimilar DP780 and DP980 High-Strength Steel Joints”, Materials Science and Engineering: A, 720, 117-129, 2018. J. Wright, “Optimizing Efficiency in HF Tube Welding Processes”, TUBE , and PIPE TECHNOLOGY, November/December 1999. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. Pearson: Boston, MA, USA, 2014. Nusantara Technologies. (n.d.). Flattening Test, and Flaring Test. Retrieved[July2,2023],form:https://www.nusatek.com/mechanical-testing/flattening-test-flaring-test.html ZwickRoell. (n.d.). Tube Flattening Test ISO 8492, DIN 50136, ASTM A370.Retrieved[July2,2023],from:https://www.zwickroell.com/zh/industries/metals/semi-finished-products/pipes/tube-flattening-test-iso-8492-din-50136-astm-a370/ | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90597 | - |
dc.description.abstract | 金屬有縫焊管應用廣泛,包含石油、化工與輕工業等工業輸送管道,以及機械與建築結構用焊管。隨著業界追求更高之結構輕量化與低碳排放量,有縫焊管之生產技術日益精進,製管廠也逐漸生產先進高強度鋼(Advanced High Strength Steel, AHSS)之高頻感應焊管(High-Frequency Induction Welding Process, HFIW)。在實際製程中,傳統製管廠會先依據經驗公式設計下料帶寬,並委外繪製輥輪模具以及開模,最終進行鋼捲剪裁與輥軋成形。然而,若想生產同管徑不同材料或同管徑不同厚度,可能會因為鋼板材料差異與幾何結構不利於此輥輪模具之原設計,現場亦會進行多次下料帶寬修正,甚至需對輥輪進行打磨,以達到順利穿帶之效果。本論文建立一套可針對不同材料之幾何尺寸進行下料帶寬的調整,分別在輥軋成形之預焊接前進行下料帶寬修整與HFIW製程以擠壓量進行下料帶寬修整,最終藉以探討材料成形性與焊接性,進而提出下料帶寬優化設計。
本論文利用有限元素軟體進行全線製管製程分析,以實際之輥軋成形機台為基礎,並以先進高強度鋼DP780、DP980與機械結構用鋼AISI 4130於不同厚度進行輥軋成形與擠壓量之設計,其中分為成形模擬與焊接模擬。於成形模擬中,使用相經驗公式建立下料帶寬,並針對不同材料與幾何尺寸進行管件成形。此外,製管廠無法逐站量測帶寬總長變化,加上經驗公式下之料寬過長,所以透過有限元素法模擬材料成形狀態進一步歸納出材料伸長比例因子,並利用比例因子修正下料帶寬,進而改善鋼板邊緣撞模等問題,觀察出較薄之厚度改善此問題顯著。 然而,修正後之下料帶寬因寬度縮短,會面臨到鋼板邊緣成形量不足之問題。於精成形站中,亦發現管件邊緣之開口回彈效應增加,此帶寬之寬度無法有效將焊接時的氧化物順利擠出,進而藉由焊接製程之擠壓量進行下料帶寬二次調校。於焊接製程中,為確保焊接製程之完整,先進行加熱線圈功率、線圈與線圈間距以及線圈圈數等製程參數探討溫度場分布,建立完整高頻感應焊接模型,並挑選製程參數中加熱效率較佳者,進行不同材料於不同厚度下之焊接模擬,觀察出厚度較厚的加熱效率較差。 最後,利用焊接擠壓量進行需求下料帶寬調整,進一步配合焊接品質控管,包含金屬焊流線、焊道硬度與壓扁試驗等作為判斷焊道品質之指標,並依此定義擠壓量修正因子,成功使預焊接前料寬量減少,並且穿帶順利,亦不會發生鋼板與輥輪間之捲料問題,進而用壓扁試驗間接檢測焊道品質,確保焊後管件強度之一致性,本論文之擠壓量設計方式可提供製程上參考用。 本論文對全線輥軋成形高頻感應焊接製程技術的貢獻在提供業界,以模擬結果輔助輥軋成形製程與高頻感應焊接對下料帶寬設計之調校,並且可應用於開設新產線之評估,有效控管焊接品質,進一步減少試誤法下修正下料帶寬與打磨輥輪模具之成本與時間,提升製程生產效率與穩定生產品質。 | zh_TW |
dc.description.abstract | Seam-welded tubes are widely used in different fields including petroleum, chemical engineering, light industry, mechanical engineering, and building construction. Due to the lightweight requirement and low-carbon structures, advanced high strength steels (AHSS) are widely adopted for manufacturing seamed tubes with high frequency induction welding (HFIW). In traditional tube manufacturing processes, manufacturers typically design the strip width based on empirical formulas, then outsource the design and creation of the rollers. Finally, they conduct the full-line roll forming process for seamed tube production. However, it can be challenging to manufacture tubes of the same diameter using different materials or thicknesses. These challenges might arise due to differences in the steel sheet's material and geometric structure, which may not be conducive to the original roll design. Consequently, multiple on-site adjustments to the strip width might be required, and it might even be necessary to grind the rollers to ensure smooth strip threading. This study proposes a method for adjusting the strip width based on the geometric dimensions of different materials. The study establishes a method to adjust the strip width based on the geometric dimensions of different materials. Adjustments are made prior to pre-welding in the roll forming process and during the HFIW process according to the amount of welding extrusion. The ultimate aim is to investigate the formability and weldability of the materials, leading to an optimized design for strip width.
The Study uses finite element analysis to conduct a comprehensive analysis of the tube manufacturing process, based on the actual roll forming machine. DP780, DP980, and mechanical structural steel AISI 4130 are used at different thicknesses for roll forming and amount of welding extrusion design. In the roll forming process, the strip width is established using empirical formulas, and tube forming is performed for different materials and geometric dimensions. Moreover, since tube manufacturers are unable to measure the total change in strip width at each station, and given that the strip width calculated using empirical formulas is often excessive, the study uses simulations to identify a factor of material elongation during the roll forming process. This factor is then used to adjust the strip width, which subsequently reduces problems such as the collision of the steel sheet's edge with the roller. Using this method can result in noticeable improvements in thinner materials. However, the adjusted strip width may face the problem of insufficient forming at the edge of the steel sheet due to its shortened width. In the Fin-Pass forming, it is also found that the opening springback effect at the edge of the tube is increased. This strip width cannot effectively squeeze out the surplus during welding. Therefore, a second adjustment to the strip width is made based on the amount of welding extrusion during the welding process. In the welding process, to ensure the completeness of the process, the HFIW parameters such as heating coil power, coil-to-coil spacing, and the number of coil turns are investigated to study temperature field distribution and establish a comprehensive HFIW model. The process parameters with better heating efficiency are selected for welding simulations of different materials with different thicknesses. It is observed that thicker materials have poorer heating efficiency. Finally, the strip width is adjusted based on the amount of welding extrusion, further coordinating with welding quality control. Indicators such as welding flow lines, weld hardness, and flattening test are used to judge weld quality. The extrusion adjustment factor is defined based on the quality of the welding flow lines, successfully reducing the strip width at the pre-welding station and ensuring smooth strip threading. This also prevents the problem of material coiling between the steel sheet and the roller. A flattening test is used indirectly to assess the weld quality, ensuring consistency in the strength of the tubes after welding. The extrusion design method presented in this study can serve as a reference for tube manufacturing. The contribution of full line roll forming seamed tube manufacturing process with High-Frequency Induction Welding is to provide the industry with a method for adjusting the strip width design based on simulation results. It can also be applied in the evaluation of setting up new production lines, effectively controlling the welding quality, further reducing the cost and time of adjusting strip width and grinding rollers by trial and error, thereby enhancing the efficiency of the manufacturing process and ensuring consistent product quality. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:47:42Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:47:42Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄 vii
圖目錄 x 表目錄 xviii 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法與步驟 7 1.3 文獻回顧 10 1.4 論文總覽 16 第二章 管材與幾何結構對管件成形之影響 18 2.1 輥軋成形製程之模型模擬設定 19 2.2 鋼板材料選用與量測板帶成形品質指標之定義 20 2.3 管件選用之單因子分析 24 2.3.1 DP780於不同厚度之影響性分析 25 2.3.2 DP980於不同厚度之影響性分析 26 2.3.3 AISI4130於不同厚度之影響性分析 27 2.4 輥軋成形分析之影響趨勢 29 2.4.1 管件開口量與應力之影響趨勢 31 2.4.2 管件Vee角之影響趨勢 36 2.4.3 修正下料帶寬之輥輪機台受力分析 37 2.4.4 修正下料帶寬之管件成形品質分析 41 第三章 高頻感應焊接製程參數對管件品質之影響分析 46 3.1 高頻感應焊管之加熱模擬模型建立 47 3.1.1 3D加熱模擬設定與邊界條件 48 3.1.2 2D焊接模擬設定與邊界條件 50 3.2 材料性質取得 51 3.2.1 鋼鐵成分分析 52 3.2.2 熱參數性質取得 53 3.3 管件之焊接品質判斷 57 3.3.1 金屬焊流線判斷指標 57 3.3.2 非破壞性試驗判斷指標 58 3.3.3 破壞性試驗判斷指標 59 3.4 磁棒設計之影響分析 61 3.4.1 磁棒位置設計之熱影響 62 3.5 高頻感應焊接加熱模擬之溫度分布趨勢 64 3.5.1 線圈焊接功率之熱影響 65 3.5.1.1 線圈功率之溫度場分布 66 3.5.1.2 線圈功率之溫度場分布結論 72 3.5.2 線圈與線圈間距之熱影響 73 3.5.3 線圈圈數之熱影響 75 3.6 焊接擠量之介紹 76 3.6.1 高頻感應焊接模擬之擠壓量趨勢 77 3.7 各材料於不同厚度之熱影響趨勢 80 第四章 設計帶寬之經驗公式 81 4.1 高頻感應焊管之焊接模擬模型分析 81 4.1.1 DP780焊接擠壓量與微硬度之趨勢分析 82 4.1.2 DP980焊接擠壓量與微硬度之趨勢分析 85 4.1.3 AISI 4130焊接擠壓量與微硬度之趨勢分析 88 4.2 歸納下料帶寬之擠壓量修正因子 92 4.2.1 管件開口量與應力之影響趨勢 97 4.2.2 管件Vee角之趨勢分析 101 4.2.3 目標下料帶寬之輥輪機台受力分析 102 4.3 破壞性試驗檢測 106 4.3.1. DP780焊道品質檢測 107 4.3.2. DP980焊道品質檢測 109 4.3.3. AISI4130焊道品質檢測 111 第五章 結論與未來展望 113 5.1 結論 113 5.2 未來展望 114 參考文獻 118 | - |
dc.language.iso | zh_TW | - |
dc.title | 下料帶寬設計對焊管品質之影響分析 | zh_TW |
dc.title | A Study on the Influence of Strip Width Design on Product Quality in Seamed Tube Manufacturing Process | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃佑民;徐瑞坤;黃永茂;向四海 | zh_TW |
dc.contributor.oralexamcommittee | You-Min Huang;Ray-Quen Hsu;Yong-Mao Hwang;Su-Hai Hsiang | en |
dc.subject.keyword | 高強度鋼,有限元素分析,輥軋成形模擬,高頻感應焊接模擬,金屬焊流線,擠壓量設計, | zh_TW |
dc.subject.keyword | High Strength Steel,Finite Element Analysis,Roll Forming,High Frequency Induction Welding,Welding Flow Line,Welding Extrusion Design, | en |
dc.relation.page | 123 | - |
dc.identifier.doi | 10.6342/NTU202303422 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
dc.date.embargo-lift | 2025-08-31 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 8.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。