Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴子安zh_TW
dc.contributor.advisorChi-An Daien
dc.contributor.author楊喬茵zh_TW
dc.contributor.authorChiao-Yin Yangen
dc.date.accessioned2023-10-03T16:46:56Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-06-
dc.identifier.citation1. Tummala, R.R., E.J. Rymaszewski, and A.G. Klopfenstein, Microelectronics Packaging Handbook: Technology Drivers Part I. 2012: Springer Science & Business Media.
2. Bar-Cohen, A., J.C. Suhling, and A.A. Tay, Encyclopedia of Packaging Materials, Processes, and Mechanics: Interconnect and Wafer Bonding Technology. Set 1. 2019: World Scientific.
3. Hsu, F.-C., et al. 3D heterogeneous integration with multiple stacking fan-out package. in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). 2018. IEEE.
4. Szendiuch, I., Development in electronic packaging–moving to 3D system configuration. Radioengineering, 2011. 20(1): p. 214-220.
5. Bowlby, R., The DIP may take its final bows: The dual-in-line package, the reigning IC package for several generations, is losing position to newcomers for packaging advanced chips. IEEE Spectrum, 1985. 22(6): p. 37-42.
6. Datta, M., Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: An overview. Journal of Micromanufacturing, 2020. 3(1): p. 69-83.
7. Fishgrab, K.L. and D.L. Barton, Flip-Chip and Backside Techniques. 2018, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
8. Yu, D.C., Bonding and Assembly at TSMC. Handbook of 3D Integration, 2014: p. 279-286.
9. Fan, X., B. Varia, and Q. Han, Design and optimization of thermo-mechanical reliability in wafer level packaging. Microelectronics Reliability, 2010. 50(4): p. 536-546.
10. Chen, S., et al. A comparative study of a fan out packaged product: Chip first and chip last. in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). 2016. IEEE.
11. Hunt, J., et al. Ploralism in Innovation FC Cu Pillar and FOWLP. in Semicon West. 2014.
12. Zhu, C., P. Guo, and Z. Dai. Investigation on wafer warpage evolution and wafer asymmetric deformation in fan-out wafer level packaging processes. in 2017 18th International Conference on Electronic Packaging Technology (ICEPT). 2017. IEEE.
13. Lin, P.B., et al. A comprehensive study on stress and warpage by design, simulation and fabrication of RDL-first panel level fan-out technology for advanced package. in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). 2017. IEEE.
14. Tseng, C.-F., et al. InFO (wafer level integrated fan-out) technology. in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). 2016. IEEE.
15. Lau, J.H., Semiconductor advanced packaging. 2021: Springer Nature.
16. Choudhury, D. 3D integration technologies for emerging microsystems. in 2010 IEEE MTT-S international microwave symposium. 2010. IEEE.
17. Reda, S., G. Smith, and L. Smith, Maximizing the functional yield of wafer-to-wafer 3-D integration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2009. 17(9): p. 1357-1362.
18. Li, Y. and D. Goyal, 3D microelectronic packaging: from fundamentals to applications. Vol. 57. 2017: Springer.
19. Ardebili, H. and M.G. Pecht, Encapsulation Technologies for Electronic Applications. 2009: William Andrew.
20. Claassen, H., B.P. Molenaar, and M. Miura. Compression molding solutions for wafer level, large panel substrate, and advanced packaging. in Proceedings of the 5th Electronics System-integration Technology Conference (ESTC). 2014. IEEE.
21. Han, J., et al. Effects of package and mold cavity structures on the wire sweep behavior during package array transfer molding. in 2011 IEEE 13th Electronics Packaging Technology Conference. 2011. IEEE.
22. Kajikawa, Y. Fan-out wafer-level packaging advanced manufacturing solution for fan-out WLP/PLP by DFD (die face down) compression mold. in 2020 International Wafer Level Packaging Conference (IWLPC). 2020. IEEE.
23. Yim, M.J., et al. Ultra thin PoP top package using compression mold: Its warpage control. in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). 2011. IEEE.
24. Brand, J.M., S.A. Ruggero, and A.J. Shah, Wiresweep reduction via direct cavity injection during encapsulation of stacked chip-scale packages. Journal of Electronic Packaging, 2008. 130(1): p. 011011.
25. Ueno, K., et al. Development of Liquid, Granule and Sheet Type Epoxy Molding Compounds for Fan Out Wafer Level Package. in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). 2017. IEEE.
26. Ueno, K., et al. Development of sheet type molding compounds for panel level package. in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 2019. IEEE.
27. Keser, B. and S. Kroehnert, Advances in Embedded and Fan-Out Wafer Level Packaging Technologies. 2019: John Wiley & Sons.
28. Bello, S., et al., Epoxy resin based composites, mechanical and tribological properties: A review. Tribology in Industry, 2015. 37(4): p. 500.
29. Brydson, J.A., Plastics materials. 1999: Elsevier.
30. Sukanto, H., et al., Epoxy resins thermosetting for mechanical engineering. Open Engineering, 2021. 11(1): p. 797-814.
31. Zhang, X., et al., Synthesis and characterization of a novel cycloaliphatic epoxy resin starting from dicyclopentadiene. European polymer journal, 2007. 43(5): p. 2149-2154.
32. Pham, H.Q. and M.J. Marks, Epoxy resins. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
33. Furukawa, N. and T. Takeichi, 5.25-Epoxy Resins and Phenol-Formaldehyde Resins. Polymer, 2012: p. 723-751.
34. Kolář, F. and J. Svitilova, Kinetics and mechanism of curing epoxy/anhydride systems. Acta Geodyn. Geomater., 2007. 4: p. 85-92.
35. Ellis, B., Chemistry and technology of epoxy resins. 1993: Springer.
36. Gibson, G., Epoxy resins, in Brydson's Plastics Materials. 2017, Elsevier. p. 773-797.
37. Godovsky, Y.K., et al., Epoxy molding compounds as encapsulation materials for microelectronic devices. Speciality Polymers/Polymer Physics, 1989: p. 1-48.
38. Barabanova, A.I., et al., Curing cycloaliphatic epoxy resin with 4-methylhexahydrophthalic anhydride: Catalyzed vs. uncatalyzed reaction. Polymer, 2019. 178: p. 121590.
39. Dai, J.B., et al., Development of a novel toughener for epoxy resins. Polymer international, 2009. 58(7): p. 838-845.
40. Mi, X., et al., Toughness and mechanism of epoxy resins. Progress in Materials Science, 2022: p. 100977.
41. Unnikrishnan, K. and E.T. Thachil, Toughening of epoxy resins. Designed monomers and polymers, 2006. 9(2): p. 129-152.
42. Linec, M. and B. Mušič, The effects of silica-based fillers on the properties of epoxy molding compounds. Materials, 2019. 12(11): p. 1811.
43. Liaw, Y. and J.-H. Chou, The effects of silica fillers on the properties of encapsulation molding compounds. Journal of Electronic Packaging, 2017. 139(3).
44. Mei, H., et al. Optimal packing research of spherical silica fillers used in epoxy molding compound. in 2009 International Conference on Electronic Packaging Technology & High Density Packaging. 2009. IEEE.
45. Kim, W., et al., Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation. Polymer Engineering & Science, 1999. 39(4): p. 756-766.
46. Hozoji, H., et al., Improvement of mechanical properties for epoxy molding compounds by treatment of coupling agent on spherical filler. Kobunshi Ronbunshu, 1990. 47(6): p. 483-490.
47. Lu, D. and C. Wong, Materials for advanced packaging. Vol. 181. 2009: Springer.
48. Chen, C., et al., High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Composites Part A: Applied Science and Manufacturing, 2019. 118: p. 67-74.
49. Kim, Y.-J., et al., Preparation and curing chemistry of ultra-low CTE epoxy composite based on the newly-designed triethoxysilyl-functionalized ortho-cresol novolac epoxy. Polymer, 2018. 147: p. 81-94.
50. Zhao, X., et al., Curing kinetics and mechanical properties of epoxy resin/1-benzyl-2-methylimidazole/isophorone diamine system. Thermochimica Acta, 2020. 690: p. 178657.
51. Kim, T.H., et al., Synthesis and characterization of a polyurethane phase separated to nano size in an epoxy polymer. Coatings, 2019. 9(5): p. 319.
52. Lee, Y.-M., K.-W. Kim, and B.-J. Kim, Thermal and Mechanical Characterization of Epoxy/Polyimide Blends via Postcuring Process. Polymers, 2023. 15(5): p. 1072.
53. Mansour, G., K. Tsongas, and D. Tzetzis, Investigation of the dynamic mechanical properties of epoxy resins modified with elastomers. Composites Part B: Engineering, 2016. 94: p. 152-159.
54. 國立臺灣大學化學工程學系廖英志教授實驗室提供之數據. 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90594-
dc.description.abstract本研究主要開發液態環氧樹脂封裝材料 (liquid epoxy molding compounds),環氧樹脂封裝材料是藉由環氧樹脂 (epoxy resins)、固化劑 (hardeners)、催化劑 (accelerators)、增韌劑 (tougheners)、二氧化矽 (silica)及矽烷耦合劑 (silane coupling agents)等材料經過加熱交聯而成,並利用差示掃描量熱儀 (DSC)、動態機械分析儀 (DMA)、熱機械分析儀 (TMA)及三點彎曲試驗 (3PB)等進行性質測量。本研究分成兩個部分,第一部分為環氧樹脂配方研究,第二部分為二氧化矽複合材料配方研究。
第一部分為環氧樹脂配方研究,我們首先比較固化劑種類對系統性能的影響,並使用BE114、BFE283及NPEL-128三種環氧樹脂進行催化劑及增韌劑添加量對系統影響的研究。在固化劑種類實驗中,比較胺和酸酐兩種固化劑,通過DSC及DMA的測試,發現酸酐固化劑具有較適合的反應溫度和較高的玻璃轉移溫度(Tg),因此我們選擇酸酐作為固化劑。接著,進行催化劑添加量實驗,DSC結果顯示隨著催化劑添加量增加,反應溫度下降;而DMA結果顯示Tg隨催化劑添加量增加有上升的趨勢。最後,進行增韌劑添加量實驗,由DSC結果發現隨著增韌劑添加量增加,反應溫度上升;而DMA結果發現Tg和儲存模數(E’)隨增韌劑添加量增加而下降。
第二部分為二氧化矽複合材料配方研究,我們選用BE114作為環氧樹脂基材,酸酐作為固化劑,0.75%作為催化劑的添加量,進行二氧化矽及矽烷耦合劑添加量對系統影響的研究。在二氧化矽添加量實驗中,DSC結果顯示隨著二氧化矽添加量增加,反應溫度上升,然而反應焓會下降且低於理論反應焓;DMA結果顯示隨著二氧化矽添加量增加,Tg會下降,而E’會上升;TMA結果顯示隨著二氧化矽添加量增加,α1及α2皆會下降,Tg也會下降,這與DMA的結果相同;3PB結果顯示增加二氧化矽含量會導致彎曲模數 (flexural modulus)上升,同時導致彎曲強度 (flexural strength)及斷裂應變 (break strain)下降。然而,增加增韌劑含量會導致彎曲模數及彎曲強度下降。在矽烷耦合劑添加量實驗中,DSC結果發現隨著矽烷耦合劑添加量增加,反應溫度下降;DMA結果發現隨著矽烷耦合劑添加量增加,Tg及高溫區的E’會下降,而低溫區的E’會上升;TGA結果發現加入矽烷耦合劑並不會影響在300°C的熱穩定性。綜上所述,本研究為液態環氧樹脂封裝材料的開發提供重要的資訊,並為相關研究領域奠定了基礎。
zh_TW
dc.description.abstractThis study focuses on developing liquid epoxy molding compounds (EMCs). Epoxy molding compounds are formulated using a combination of epoxy resins, hardeners, accelerators, tougheners, silica, and silane coupling agents. Various characterization techniques such as differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and three-point bending test (3PB) are utilized to measure the material properties of EMCs. The research is divided into two parts: the first part focuses on the formulation of epoxy resin, while the second part focuses on the formulation of silica composite materials.
The first part of the study focuses on the formulation of epoxy resins. Initially, we compare the effects of various types of hardeners on the performance of the system. We conduct an investigation to study the influence of accelerator and toughener concentrations on the properties of three epoxy resins: BE114, BFE283, and NPEL-128. In order to compare the effects of different types of hardeners, including amines and anhydrides, we conduct DSC and DMA tests. The results indicate that anhydride hardeners require high curing temperatures and exhibit higher glass transition temperature (Tg) after curing. Consequently, we select anhydrides as the preferred hardeners for further investigations. Subsequently, we conduct experiments to study the effects of accelerator concentrations. DSC results show that as the accelerator concentration increases, the curing temperature decreases. The DMA results indicate an upward trend in Tg of the cured samples as the accelerator concentration increases. Finally, we examine the impact of toughener concentrations. The DSC results reveal that increasing the concentration of the toughener leads to an increase in curing temperature. The DMA results demonstrate that as the concentration of the toughener increases, both Tg and storage modulus (E’) decrease.
The second part of the study focuses on the formulation of silica composite materials. BE114 is selected as the epoxy resin matrix, anhydride as the hardener, and an accelerator concentration of 0.75%. The study investigates the effects of silica and silane coupling agent concentrations on the thermal and mechanical properties of the composite systems. In the experiments involving varying silica concentrations, the results from DSC show that as the concentration of silica increases, the curing temperature increases. However, the enthalpy of the reaction decreases and is lower than the theoretical value. The DMA results indicate that as the silica concentration increases, Tg decreases while the E’ increases. The TMA results reveal that an increase in silica concentration leads to a decrease in both α1 and α2, resulting in a decrease in Tg, which is consistent with the DMA results. The results of the three-point bending test (3PB) show that an increase in silica content leads to an increase in flexural modulus, but a decrease in flexural strength and break strain. However, an increase in toughener content results in a decrease in both flexural modulus and flexural strength. In the experiments that involve varying silane coupling agent concentrations, DSC results indicate that as the concentration of the silane coupling agent increases, the curing temperature decreases. The DMA results indicate that as the concentration of silane coupling agent increases, Tg and E’ in the high-temperature range decreases, while E’ in the low-temperature range increases. The TGA results reveal that the thermal stability values at 300°C are not affected by the addition of silane coupling agents. In summary, this study provides valuable information for the development of liquid epoxy molding compounds and lays the foundation for further research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:46:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:46:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
Contents VII
List of Figures XI
List of Tables XVI
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Semiconductor Packaging Technology 3
2.1.1 Traditional Packaging 3
2.1.2 Flip Chip Package 4
2.1.3 Chip-on-Wafer-on-Substrate (CoWoS) 5
2.1.4 Wafer Level Packaging 6
2.1.5 3D Integration 8
2.2 Mold Technology and Material Form 10
2.2.1 Mold Technology 10
2.2.2 Material Form 12
2.3 Raw Materials for Epoxy Molding Compounds 14
2.3.1 Epoxy Resins 14
2.3.2 Hardeners 16
2.3.3 Accelerators 18
2.3.4 Tougheners 19
2.3.5 Fillers 21
2.3.6 Silane Coupling Agents 22
2.4 Requirements for EMC 23
Chapter 3 Experimental Section 24
3.1 Materials and Equipment 24
3.2 Sample Preparation 28
3.2.1 Preparation of Epoxy Resin Samples 28
3.2.2 Preparation of Samples Containing Silica 29
3.2.3 Preparation of Samples Containing Silane 30
3.3 Experimental Design 32
3.3.1 Effect of Different Hardeners on EMC 32
3.3.2 Effect of Accelerator Amounts on EMC 33
3.3.3 Effect of Toughener Amounts on EMC 34
3.3.4 Effect of Silica Contents on EMC 34
3.3.5 Effect of Silane Contents on EMC 37
3.4 Characteristic Test of Epoxy Molding Compounds 39
3.4.1 Differential Scanning Calorimetry (DSC) 39
3.4.2 Dynamic Mechanical Analyzer (DMA) 40
3.4.3 Thermogravimetric Analysis (TGA) 41
3.4.4 Thermomechanical Analysis (TMA) 42
3.4.5 Three-Point Bending Test (3PB) 43
3.4.6 Scanning Electron Microscope (SEM) 45
Chapter 4 Results and Discussion 46
4.1 Effect of Different Hardeners on EMC 46
4.2 Effect of Accelerator Amounts on EMC 48
4.2.1 BE114 Resin System 48
4.2.2 BFE283 Resin System 50
4.2.3 NPEL-128 Resin system 52
4.3 Effect of Toughener Amounts on EMC 54
4.3.1 BE114 Resin System 54
4.3.2 BFE283 Resin System 57
4.3.3 NPEL-128 Resin System 59
4.4 Analysis of Three Different Resins 61
4.5 Effect of Silica Contents on EMC 63
4.5.1 Differential Scanning Calorimetry (DSC) 63
4.5.2 Dynamic Mechanical Analyzer (DMA) 69
4.5.3 Thermomechanical Analysis (TMA) 73
4.5.4 Three-Point Bending Test (3PB) 77
4.5.5 Scanning Electron Microscope (SEM) 83
4.6 Effect of Silane Contents on EMC 87
4.6.1 Viscosity Analysis 87
4.6.2 Differential Scanning Calorimetry (DSC) 88
4.6.3 Dynamic Mechanical Analyzer (DMA) 92
4.6.4 Thermogravimetric Analysis (TGA) 96
Chapter 5 Conclusions 99
5.1 Formulation of Epoxy Resins 99
5.2 Formulation of Silica Composite Materials 100
5.3 Requirement Specification 101
Reference 102
Appendix 106
-
dc.language.isoen-
dc.subject增韌劑zh_TW
dc.subject矽烷耦合劑zh_TW
dc.subject二氧化矽zh_TW
dc.subject液態環氧樹脂封裝材料zh_TW
dc.subject環氧樹脂zh_TW
dc.subject固化劑zh_TW
dc.subjectsilane coupling agentsen
dc.subjecttoughenersen
dc.subjectsilicaen
dc.subjectepoxy resinsen
dc.subjectliquid epoxy molding compoundsen
dc.subjecthardenersen
dc.title應用於先進半導體封裝之液態高二氧化矽填充環氧樹脂封裝材料配方/性質研究zh_TW
dc.titleFormulation/Property Investigation of Silica-Filled Liquid Epoxy Molding Compounds for Advanced Semiconductor Packagingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee邱文英;鄭如忠;楊長謀;曹恆光zh_TW
dc.contributor.oralexamcommitteeWen-Yen Chiu;Ru-Jong Jeng;Chang-Mou Yang;Heng-Kwong Tsaoen
dc.subject.keyword液態環氧樹脂封裝材料,環氧樹脂,固化劑,增韌劑,二氧化矽,矽烷耦合劑,zh_TW
dc.subject.keywordliquid epoxy molding compounds,epoxy resins,hardeners,tougheners,silica,silane coupling agents,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202302482-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2028-08-03-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved