請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90593
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴子安 | zh_TW |
dc.contributor.advisor | Chi-An Dai | en |
dc.contributor.author | 周育民 | zh_TW |
dc.contributor.author | Yu-Min Chou | en |
dc.date.accessioned | 2023-10-03T16:46:40Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | 1. Davis, S.J., K. Caldeira, and H.D. Matthews, Future CO2 emissions and climate change from existing energy infrastructure. Science, 2010. 329(5997): p. 1330-1333.
2. Cywar, R.M., et al., Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 2022. 7(2): p. 83-103. 3. Hermann, B., K. Blok, and M.K. Patel, Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environmental science & technology, 2007. 41(22): p. 7915-7921. 4. Zhang, Y. and M.A. Dubé, Green Emulsion Polymerization Technology, in Polymer Reaction Engineering of Dispersed Systems: Volume I, W. Pauer, Editor. 2018, Springer International Publishing: Cham. p. 65-100. 5. Casas-Soto, C.R., et al., Dibutyl itaconate and lauryl methacrylate copolymers by emulsion polymerization for development of sustainable pressure-sensitive adhesives. Polymers, 2022. 14(3): p. 632. 6. Matsumoto, A., et al., Emulsion polymerization of lauryl methacrylate and its copolymerization with trimethylolpropane trimethacrylate. Polymer, 1999. 40(20): p. 5687-5690. 7. Oliveira, M.P., D.S. Giordani, and A.M. Santos, The role of itaconic and fumaric acid in the emulsion copolymerization of methyl methacrylate and n-butyl acrylate. European Polymer Journal, 2006. 42(5): p. 1196-1205. 8. Lock, M.R., et al., Role of itaconic acid in latex particle nucleation. Journal of Applied Polymer Science, 1991. 42(4): p. 1065-1072. 9. Kuenz, A. and S. Krull, Biotechnological production of itaconic acid—things you have to know. Applied Microbiology and Biotechnology, 2018. 102(9): p. 3901-3914. 10. Yahiro, K., et al., Efficient itaconic acid production from raw corn starch. Journal of fermentation and bioengineering, 1997. 84(4): p. 375-377. 11. Willke, T. and K.-D. Vorlop, Biotechnological production of itaconic acid. Applied microbiology and biotechnology, 2001. 56: p. 289-295. 12. Teleky, B.-E. and D.C. Vodnar, Biomass-derived production of itaconic acid as a building block in specialty polymers. Polymers, 2019. 11(6): p. 1035. 13. Droesbeke, M.A., et al., Biobased acrylic pressure-sensitive adhesives. Progress in Polymer Science, 2021. 117: p. 101396. 14. Kumar, S., et al., Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. Polymer International, 2017. 66(10): p. 1349-1363. 15. Emelie, B., C. Pichot, and J. Guillot, Batch emulsion copolymerization of n-butyl acrylate and methyl methacrylate in the presence of a nonionic surfactant. Die Makromolekulare Chemie, 1985. 10(S19851): p. 43-57. 16. Fréal-Saison, S., et al., Emulsifier-Free Controlled Free-Radical Emulsion Polymerization of Styrene via RAFT Using Dibenzyltrithiocarbonate as a Chain Transfer Agent and Acrylic Acid as an Ionogenic Comonomer: Batch and Spontaneous Phase Inversion Processes. Macromolecules, 2006. 39(25): p. 8632-8638. 17. Huang, J., et al., RAFT Ab Initio Emulsion Polymerization of Styrene Using Poly(acrylic acid)-b-polystyrene Trithiocarbonate of Various Structures as Mediator and Surfactant. Macromolecular Reaction Engineering, 2014. 8(10): p. 696-705. 18. Kumar, S., et al., Itaconic acid used as a versatile building block for the synthesis of renewable resource‐based resins and polyesters for future prospective: a review. Polymer International, 2017. 66(10): p. 1349-1363. 19. Li, K., et al., Role of acrylic acid in the synthesis of core‐shell fluorine‐containing polyacrylate latex with spherical and plum blossom‐like morphology. Journal of Applied Polymer Science, 2015. 132(37). 20. Ho, K.M., et al., Amphiphilic polymeric particles with core–shell nanostructures: emulsion-based syntheses and potential applications. Colloid and Polymer Science, 2010. 288(16): p. 1503-1523. 21. Chen, C.-F., K.-H. Lee, and W.-Y. Chiu, Synthesis and characterization of poly(butyl acrylate–methyl methacrylate)/polyaniline core–shell latexes. Journal of Applied Polymer Science, 2007. 104(2): p. 823-830. 22. Heuts, J.P.A., Theory of Radical Reactions, in Handbook of Radical Polymerization. 2002. p. 1-76. 23. Scott, R.A. and N.A. Peppas, Kinetic study of acrylic acid solution polymerization. AIChE Journal, 1997. 43(1): p. 135-144. 24. Lovell, P.A. and F.J. Schork, Fundamentals of Emulsion Polymerization. Biomacromolecules, 2020. 21(11): p. 4396-4441. 25. Brooks, B., Suspension Polymerization Processes. Chemical Engineering & Technology, 2010. 33(11): p. 1737-1744. 26. Bon, S.A.F. and D.M. Haddleton, Experimental Procedures and Techniques for Radical Polymerization, in Handbook of Radical Polymerization. 2002. p. 845-893. 27. Kawaguchi, S. and K. Ito, Dispersion Polymerization, in Polymer Particles: -/-, M. Okubo, Editor. 2005, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 299-328. 28. Chern, C.-S., Principles and applications of emulsion polymerization. 2008: John Wiley & Sons. 29. Qun, W., F. Shoukuan, and Y. Tongyin, Emulsion polymerization. Progress in Polymer Science, 1994. 19(4): p. 703-753. 30. Smith, W.V. and R.H. Ewart, Kinetics of Emulsion Polymerization. The Journal of Chemical Physics, 1948. 16(6): p. 592-599. 31. Moad, G. and D.H. Solomon, The chemistry of radical polymerization. 2006: Elsevier. 32. Moad, G., et al., Initiating free radical polymerization. Macromolecular Symposia, 2002. 182(1): p. 65-80. 33. Coote, M.L. and T.P. Davis, The mechanism of the propagation step in free-radical copolymerisation. Progress in Polymer Science, 1999. 24(9): p. 1217-1251. 34. Bamford, C.H., R.W. Dyson, and G.C. Eastmond, Network formation IV. The nature of the termination reaction in free-radical polymerization. Polymer, 1969. 10: p. 885-899. 35. Vanderhoff, J.W., Mechanism of emulsion polymerization. Journal of Polymer Science: Polymer Symposia, 1985. 72(1): p. 161-198. 36. Asua, J.M., Emulsion polymerization: From fundamental mechanisms to process developments. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(5): p. 1025-1041. 37. Tauer, K., et al., Towards a consistent mechanism of emulsion polymerization—new experimental details. Colloid and Polymer Science, 2008. 286(5): p. 499-515. 38. Hansen, F. and J. Ugelstad, Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. Journal of Polymer Science: Polymer Chemistry Edition, 1978. 16(8): p. 1953-1979. 39. de Arbina, L.L., et al., Emulsion polymerization: particle growth kinetics. Polymer, 1996. 37(26): p. 5907-5916. 40. Fitzwater, S., et al., Propagating Radical Termination at High Conversion in Emulsion Polymerization of MMA. Rate Coefficient Determination from ESR Data. Macromolecules, 1999. 32(10): p. 3183-3189. 41. Harkins, W.D., A general theory of the mechanism of emulsion polymerization1. Journal of the American Chemical Society, 1947. 69(6): p. 1428-1444. 42. Wang, H., Q. Pan, and G.L. Rempel, Micellar nucleation differential microemulsion polymerization. European Polymer Journal, 2011. 47(5): p. 973-980. 43. Gardon, J.L., Emulsion polymerization. I. Recalculation and extension of the Smith-Ewart theory. Journal of Polymer Science Part A-1: Polymer Chemistry, 1968. 6(3): p. 623-641. 44. Hansen, F.K. and J. Ugelstad, Particle nucleation in emulsion polymerization. III. Nucleation in systems with anionic emulsifier investigated by seeded and unseeded polymerization. Journal of Polymer Science: Polymer Chemistry Edition, 1979. 17(10): p. 3047-3067. 45. Gardon, J., Emulsion polymerization. II. Review of experimental data in the context of the revised Smith‐Ewart theory. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1968. 6(3): p. 643-664. 46. El-hoshoudy, A.N.M.B., Emulsion polymerization mechanism. Recent research in polymerization, 2018: p. 1. 47. Guyot, A. and K. Tauer, Reactive surfactants in emulsion polymerization. Polymer Synthesis, 2005: p. 43-65. 48. Özdeğer, E., et al., Role of the nonionic surfactant Triton X‐405 in emulsion polymerization. I. Homopolymerization of styrene. Journal of Polymer Science Part A: Polymer Chemistry, 1997. 35(17): p. 3813-3825. 49. Guyot, A., Advances in reactive surfactants. Advances in Colloid and Interface Science, 2004. 108: p. 3-22. 50. Asua, J. and H. Schoonbrood, Reactive surfactants in heterophase polymerization. Acta Polymerica, 1998. 49(12): p. 671-686. 51. Al-Ayed, A.S., et al., Effect of reactive and non-reactive counterion micelles upon the alkaline degradation of indomethacin. Journal of Saudi Chemical Society, 2014. 18(1): p. 77-83. 52. Zhao, M., et al., Itaconic acid production in microorganisms. Biotechnology letters, 2018. 40: p. 455-464. 53. Steiger, M.G., et al., Biochemistry of microbial itaconic acid production. Frontiers in microbiology, 2013. 4: p. 23. 54. Lock, M.R., et al., Investigation of the persulfate/itaconic acid interaction and implications for emulsion polymerization. Journal of Applied Polymer Science, 1990. 39(10): p. 2129-2140. 55. Ceska, G., The effect of carboxylic monomers on surfactant‐free emulsion copolymerization. Journal of Applied Polymer Science, 1974. 18(2): p. 427-437. 56. Ma, J.-z., et al., Research advances in polymer emulsion based on “core–shell” structure particle design. Advances in Colloid and Interface Science, 2013. 197-198: p. 118-131. 57. Kang, K., et al., Synthesis and properties of soap-free poly (methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization. European polymer journal, 2005. 41(3): p. 439-445. 58. Slawinski, M., et al., Seeded emulsion polymerization of styrene: Incorporation of acrylic acid in latex products. Journal of applied polymer science, 2000. 78(4): p. 875-885. 59. Zhang, K., et al., Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology, 2009. 190(3): p. 393-400. 60. Inphonlek, S., N. Pimpha, and P. Sunintaboon, Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Colloids and Surfaces B: Biointerfaces, 2010. 77(2): p. 219-226. 61. Ma, H., et al., The one-step Pickering emulsion polymerization route for synthesizing organic-inorganic nanocomposite particles. Materials, 2010. 3(2): p. 1186-1202. 62. Borthakur, L.J., T. Jana, and S.K. Dolui, Preparation of core–shell latex particles by emulsion co-polymerization of styrene and butyl acrylate, and evaluation of their pigment properties in emulsion paints. Journal of Coatings Technology and Research, 2010. 7(6): p. 765-772. 63. Lu, Y., Y. Xia, and R.C. Larock, Surfactant-free core–shell hybrid latexes from soybean oil-based waterborne polyurethanes and poly(styrene-butyl acrylate). Progress in Organic Coatings, 2011. 71(4): p. 336-342. 64. Ye, W., et al., Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. Journal of Applied Polymer Science, 2006. 102(2): p. 1787-1793. 65. Llorente, O., et al., Challenges to incorporate high contents of bio-based isobornyl methacrylate (IBOMA) into waterborne coatings. Progress in Organic Coatings, 2022. 172: p. 107137. 66. Ladu, L. and K. Blind, Overview of policies, standards and certifications supporting the European bio-based economy. Current Opinion in Green and Sustainable Chemistry, 2017. 8: p. 30-35. 67. Majer, S., et al., Gaps and Research Demand for Sustainability Certification and Standardisation in a Sustainable Bio-Based Economy in the EU. Sustainability, 2018. 10(7): p. 2455. 68. Kunioka, M., F. Ninomiya, and M. Funabashi, Biobased Contents of Organic Fillers and Polycaprolactone Composites with Cellulose Fillers Measured by Accelerator Mass Spectrometry Based on ASTM D6866. Journal of Polymers and the Environment, 2007. 15(4): p. 281-287. 69. Zumstein, M.T., et al., Dos and Do Nots When Assessing the Biodegradation of Plastics. Environmental Science & Technology, 2019. 53(17): p. 9967-9969. 70. An Economic Impact Analysis of the US Biobased Products Industry: A Report to the Congress of the United States of America. Industrial Biotechnology, 2015. 11(4): p. 201-209. 71. Iwata, T., Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angewandte Chemie International Edition, 2015. 54(11): p. 3210-3215. 72. Dastjerdi, Z., E.D. Cranston, and M.A. Dubé, Synthesis of poly (n‐butyl acrylate/methyl methacrylate)/CNC latex nanocomposites via in situ emulsion polymerization. Macromolecular Reaction Engineering, 2017. 11(6): p. 1700013. 73. Lock, M.R., et al., Investigation of the persulfate/itaconic acid interaction and implications for emulsion polymerization. Journal of applied polymer science, 1990. 39(10): p. 2129-2140. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90593 | - |
dc.description.abstract | 在近年來,全球碳排放和極端天氣等環境問題愈發嚴重,因此研究利用可再生的生物質材料替代石化產品變得非常重要。聚衣康酸(poly(itaconic acid))因其單體衣康酸(itaconic acid)可通過木質纖維素植物發酵大規模生產而備受關注。在本研究中,我們採用簡單的一步驟乳液聚合方法合成了核殼型乳膠顆粒,並且成功利用硫酸鉀水性起始劑(KPS)以及市售非離子型反應型乳化劑(ER-10)來合成高固含量(50wt%)的乳液。在乾燥後的產品中,含有40wt%的聚衣康酸材料也足以用作綠色塗料。我們還發現,衣康酸可作為助乳化劑,協同促進高固體含量和生質核殼型奈米顆粒的合成。此研究還探討了乳化聚合的最適配方條件,包括起始劑用量和加入時間的影響,以及衣康酸用量對聚合轉化率的影響。
為了增加乳液的生質含量,在本研究中我們引入了高生質含量的單體,包括二丁基己烯二酸酯(DBIA)和月桂基丙烯酸酯(LA)。同時,我們發現添加反應性較強之甲基丙烯酸甲酯(MMA)及其用量是成功和呈穩定乳膠顆粒之關鍵。過多的MMA會導致反應過快且易固化,但因為生質單體DBIA的反應性較差,若是沒有反應性單體的加入,反應將無法聚合。在這項研究中,我們成功地合成了一種固含量為50wt%的乳液,其中生質含量超過50%,並使乳液顆粒呈現梯度結構。透過改變實驗方法,使得衣康酸(IA)與其他油相單體之間共聚合反應更加均勻,這樣的改變導致乳液內部形成梯度結構。總結來說,這項研究成功地利用引入DBIA和LA單體以及反應性單體MMA組分,配製出高生質含量和高固含量的乳液。 | zh_TW |
dc.description.abstract | Recently, research into replacing petrochemicals with renewable biomass materials has gained tremendous importance due to growing environmental concerns such as global carbon emissions and extreme weather conditions. Poly(itaconic acid) (PIA) has therefore received a lot of attention because its monomer, itaconic acid (IA), is a renewable chemical and can be produced on a large scale by fermentation from lignocellulosic plants. In this study, we synthesize core/shell latex nanoparticles with PIA as the shell and petrochemical poly(methyl methacrylate)-co-poly(butyl acrylate) (poly(MMA/BA)) as the core using a simple one-pot emulsion polymerization method. A high total solids content of a 50 wt% emulsion solution suitable for commercial use and a high biomass content of 40 wt% PIA in the dried coated product sufficient to be used as green material can be achieved through the use of an aqueous initiator of potassium persulfate (KPS) and a commercially available nonionic reactive emulsifier of ER-10. IA was found to act as a co-emulsifier, synergistically facilitating the synthesis of the high solids and biomass core/shell nanoparticles. Advances in optimizing the emulsion synthesis process are also reported, including the effects of initiator level and timing, and IA level to improve polymerization conversion. The core/shell nanoparticles could prove useful in future coatings and the ion absorption industry.
In an effort to pursue eco-friendly and greener products, the emulsion formulation was modified by introducing high biomass monomers. Specifically, dibutyl itaconate (DBIA) and lauryl acrylate (LA) were incorporated into the emulsion formulation as monomers with a high bio-based content. Alongside these additions, the amount of reactive monomer methyl methacrylate (MMA) was considered an essential comonomer for the study. Too much MMA will significantly increase the polymerization rate too fast to cause coagulation. However, the reaction cannot proceed without the reactive monomer of MMA due to the insufficient reactivity of DBIA monomer. The successful synthesis of a 50wt% emulsion was achieved, featuring both high solids content and a bio-based content exceeding 50%. Unlike petroleum-based emulsions that exhibit a distinct core-shell structure, the bio-based emulsions demonstrated a gradient structure poly(DBIA/LA/MMA/IA). This gradient structure emerged as a result of modifications in the experimental procedure, specifically the improved combination effect between itaconic acid (IA) and other oil phase monomers. This enhanced combination effect led to the formation of a gradient structure within the emulsion. Overall, this study highlights the successful formulation of a high bio-based content emulsion with a gradient structure, achieved through the introduction of DBIA and LA monomers alongside the essential MMA component. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:46:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:46:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Content v List of Figures x List of Tables xiv Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1 Emulsion polymerization 4 2.1.1 Introduction of emulsion polymerization 4 2.1.2 Mechanism of emulsion polymerization 7 2.1.3 Micellar nucleation theory 10 2.2 Types of surfactants for emulsion polymerization 13 2.2.1 Anionic surfactants 13 2.2.2 Nonionic surfactants 14 2.2.3 Reactive surfactants 14 2.2.4 Non-reactive surfactants 15 2.3 Film-forming mechanism of latex particles 15 2.3.1 Water evaporates 15 2.3.2 Particles deformation and coalescence 16 2.3.3 Inter-diffusion between particles 16 2.4 Introduction of itaconic acid (IA) 17 2.5 Core-Shell structure synthesized by emulsion polymerization 18 2.6 Application of core-shell structure latex 20 2.7 Bio-based monomers in emulsion polymerization 21 2.8 Introduction of bio-based content certification 22 Chapter 3. Experimental 25 3.1 Materials and Equipment 25 3.2 Synthesis of petroleum-based emulsions 28 3.2.1 Add initiator after heating to reaction temperature 28 3.2.2 Add initiator before heating to reaction temperature 29 3.3 Synthesis of bio-based content emulsions 32 3.4 Characterization 36 3.4.1 Methanol precipitation method to calculate overall reaction conversion 36 3.4.2 Calculation of overall reaction conversion by drying method 36 3.4.3 Thermogravimetry analysis (TGA) 37 3.4.4 Gel permeation chromatography (GPC) 37 3.4.5 Differential scanning calorimetry (DSC) 38 3.4.6 Zeta potential analysis 38 3.4.7 Dynamic mechanical analysis (DMA) 38 3.4.8 Dynamic light scattering (DLS) 39 3.4.9 Transmission electron microscopy (TEM) analysis 39 Chapter 4. Results of petroleum-based emulsions 41 4.1 Different timings of adding initiator 41 4.2 Different IA content in low solid content (20%) 43 4.3 Increase solid content 45 4.4 Increase conversion by increasing KPS addition 46 4.5 Increase IA content in 50% solid content 48 4.6 Effect of different surfactant addition 49 4.6.1 Disadvantages of high surfactant and non-surfactant content emulsions 52 4.7 Characterization of petroleum-based copolymer emulsions 53 4.7.1 Transmission electron microscopy (TEM) 53 4.7.2 Dynamic light scattering (DLS) 58 4.7.3 Glass transition temperature 60 4.7.4 Thermal degradation analysis (TGA) 64 4.7.5 Zeta potential 66 4.7.6 Gel permeation chromatography (GPC) 68 Chapter 5. Results of bio-based emulsions 70 5.1 Substitution of petroleum-based monomers 70 5.2 Synthesis of using non-ionic surfactant 70 5.3 Synthesis of using ionic surfactant 72 5.4 Comparison of non-ionic and ionic surfactant 73 5.5 Introducing reactive monomer into bio-based emulsion 74 5.5.1 Synthesis of IA10M50 76 5.5.2 Synthesis of IA10M30 and IA10M35 78 5.5.3 Synthesis of IA10M40 79 5.5.4 Effect of different MMA content on overall conversion 80 5.6 Effect of different IA addition on film formation 82 5.7 Characterization of bio-based copolymer latex 86 5.7.1 Thermal degradation analysis (TGA) 86 5.7.2 Glass transition temperature analysis by dynamic mechanical analysis (DMA) 88 5.7.3 Transmission electron microscopy (TEM) 93 5.7.4 Dynamic light scattering (DLS) 95 5.7.5 Zeta potential 99 Chapter 6. Conclusion 103 Chapter 7. Reference 105 | - |
dc.language.iso | en | - |
dc.title | 以乳化聚合法合成高固含量之生質乳膠顆粒 | zh_TW |
dc.title | Synthesis of Bio-Based Latex Particles with High Solid Content by Emulsion Polymerization | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 邱文英 | zh_TW |
dc.contributor.coadvisor | Wen-Yun Chiu | en |
dc.contributor.oralexamcommittee | 鄭如忠;曹恆光;楊長謀 | zh_TW |
dc.contributor.oralexamcommittee | Ru-Jong Jeng;Heng-Kwong Tsao;Chang-Mou Yang | en |
dc.subject.keyword | 乳化聚合,生質材料,衣康酸,壓克力乳液,核殼形奈米材料,高固含量乳液,一步驟合成, | zh_TW |
dc.subject.keyword | emulsion polymerization,bio-based materials,itaconic acid,acrylic emulsion,high solid content emulsion,one-step reaction, | en |
dc.relation.page | 113 | - |
dc.identifier.doi | 10.6342/NTU202302480 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
dc.date.embargo-lift | 2028-07-31 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-07-31 | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。