請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林沛群 | zh_TW |
| dc.contributor.advisor | Pei-Chun Lin | en |
| dc.contributor.author | 劉佳鑫 | zh_TW |
| dc.contributor.author | Jia-Xin Liu | en |
| dc.date.accessioned | 2023-10-03T16:40:43Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] "Executive Summary WR Industrial Robots 2022." https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2022.pdf (accessed.
[2] ABB. "ABB IRB4600 Product Specification." https://search.abb.com/library/Download.aspx?DocumentID=3HAC032885-001&LanguageCode=en&DocumentPartId=&Action=Launch (accessed. [3] W. Wang, Q. Guo, Z. Yang, Y. Jiang, and J. Xu, "A state-of-the-art review on robotic milling of complex parts with high efficiency and precision," Robotics and Computer-Integrated Manufacturing, vol. 79, p. 102436, 2023/02/01/ 2023, doi: https://doi.org/10.1016/j.rcim.2022.102436. [4] Z. Li, S. Li, and X. Luo, "An Overview of Calibration Technology of Industrial Robots," IEEE/CAA Journal of Automatica Sinica, vol. - 8, no. 1, p. 23, - 2021, doi: - 10.1109/jas.2020.1003381. [5] L. Stadelmann, T. Sandy, A. Thoma, and J. Buchli, "End-Effector Pose Correction for Versatile Large-Scale Multi-Robotic Systems," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 546-553, 2019, doi: 10.1109/LRA.2019.2891499. [6] K. L. Conrad, P. S. Shiakolas, and T. C. Yih, "ROBOTIC CALIBRATION ISSUES: ACCURACY, REPEATABILITY AND CALIBRATION," 2000. [7] W. Veitschegger and W. Chi-haur, "A method for calibrating and compensating robot kinematic errors," in Proceedings. 1987 IEEE International Conference on Robotics and Automation, 31 March-3 April 1987 1987, vol. 4, pp. 39-44, doi: 10.1109/ROBOT.1987.1087839. [8] T. Zhang, L. Du, and X. Dai, "Test of robot distance error and compensation of kinematic full parameters," Advances in Mechanical Engineering, vol. 6, p. 810684, 2014. [9] M. Grotjahn and B. Heimann, "Model-based feedforward control in industrial robotics," The International Journal of Robotics Research, vol. 21, no. 1, pp. 45-60, 2002. [10] Z. Liu, G. Lai, Y. Zhang, and C. P. Chen, "Adaptive fuzzy tracking control of nonlinear time-delay systems with dead-zone output mechanism based on a novel smooth model," IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 1998-2011, 2015. [11] Z. Roth, B. Mooring, and B. Ravani, "An Overview of Robot Calibration," Robotics and Automation, IEEE Journal of, vol. 3, pp. 377-385, 11/01 1987, doi: 10.1109/JRA.1987.1087124. [12] Z. S. R. Benjamin W. Mooring, Morris R. Driels Fundamentals of manipulator calibration. [13] S. L. Brunton and J. N. Kutz, "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control," 2023. [Online]. Available: https://databookuw.com/. [14] 楊武德, "Self Calibration and Manipulation Coordination in a Dual Arm Robot," 國立臺灣大學機械工程系, 2016. [Online]. Available: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78154 [15] R. P. Judd and A. B. Knasinski, "A technique to calibrate industrial robots with experimental verification," Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 351-357, 1987. [16] C. Raksiri, K. Pa-im, and S. Rodkwan, "An Analysis of Joint Assembly Geometric Errors Affecting End-Effector for Six-Axis Robots," Robotics, vol. 9, no. 2, p. 27, 2020. [Online]. Available: https://www.mdpi.com/2218-6581/9/2/27. [17] C. Gong , J. Yuan , and J. Ni "A Self-Calibration Method for Robotic Measurement System," Journal of Manufacturing Science and Engineering, vol. 122, no. 1, pp. 174-181, 1999, doi: 10.1115/1.538916. [18] A. Nubiola and I. A. Bonev, "Absolute robot calibration with a single telescoping ballbar," Precision Engineering, vol. 38, no. 3, pp. 472-480, 2014. [19] A. Joubair and I. A. Bonev, "Non-kinematic calibration of a six-axis serial robot using planar constraints," Precision Engineering, vol. 40, pp. 325-333, 2015/04/01/ 2015, doi: https://doi.org/10.1016/j.precisioneng.2014.12.002. [20] J. Miseikis, K. Glette, O. J. Elle, and J. Torresen, "Automatic calibration of a robot manipulator and multi 3D camera system," in 2016 IEEE/SICE International Symposium on System Integration (SII), 13-15 Dec. 2016 2016, pp. 735-741, doi: 10.1109/SII.2016.7844087. [21] S. Lei, L. Jingtai, S. Weiwei, W. Shuihua, and H. Xingbo, "Geometry-based robot calibration method," in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, 2004, vol. 2: IEEE, pp. 1907-1912. [22] R. G. Bonitz and T. C. Hsia, "Calibrating a multi-manipulator robotic system," IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 18-22, 1997. [23] J. H. Jang, S. H. Kim, and Y. K. Kwak, "Calibration of geometric and non-geometric errors of an industrial robot," Robotica, vol. 19, no. 3, pp. 311-321, 2001. [24] Z. Li, S. Li, A. Francis, and X. Luo, "A Novel Calibration System for Robot Arm via an Open Dataset and a Learning Perspective," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 5169-5173, 2022, doi: 10.1109/TCSII.2022.3199158. [25] C. Lightcap, S. Hamner, T. Schmitz, and S. Banks, "Improved Positioning Accuracy of the PA10-6CE Robot with Geometric and Flexibility Calibration," IEEE Transactions on Robotics, vol. 24, no. 2, pp. 452-456, 2008, doi: 10.1109/TRO.2007.914003. [26] S. Kumar, P. K. Tiwari, and S. B. Chaudhury, "An optical triangulation method for non-contact profile measurement," in 2006 IEEE International Conference on Industrial Technology, 15-17 Dec. 2006 2006, pp. 2878-2883, doi: 10.1109/ICIT.2006.372653. [27] R. G. Dorsch, G. Häusler, and J. M. Herrmann, "Laser triangulation: fundamental uncertainty in distance measurement," Applied optics, vol. 33, no. 7, pp. 1306-1314, 1994. [28] "3 REASONS TO USE BLUE OVER RED LASERS IN DISPLACEMENT MEASUREMENT." https://www.bestech.com.au/blogs/3-reasons-to-use-blue-over-red-lasers-in-displacement-measurement/ (accessed. [29] J. Cheng, Y. Xie, S. Zhou, A. Lu, X. Peng, and W. Liu, "Improved Weighted Non-Local Mean Filtering Algorithm for Laser Image Speckle Suppression," Micromachines, vol. 14, no. 1, p. 98, 2023. [Online]. Available: https://www.mdpi.com/2072-666X/14/1/98. [30] R. Baribeau and M. Rioux, "Influence of speckle on laser range finders," Applied Optics, vol. 30, no. 20, pp. 2873-2878, 1991/07/10 1991, doi: 10.1364/AO.30.002873. [31] H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," Journal of biomedical optics, vol. 8, no. 3, pp. 559-564, 2003. [32] M. Rahayem, N. Werghi, and J. Kjellander, "Best ellipse and cylinder parameters estimation from laser profile scan sections," Optics and Lasers in Engineering, vol. 50, no. 9, pp. 1242-1259, 2012/09/01/ 2012, doi: https://doi.org/10.1016/j.optlaseng.2012.03.014. [33] S. Larsson and J. A. P. Kjellander, "Motion control and data capturing for laser scanning with an industrial robot," Robotics and Autonomous Systems, vol. 54, no. 6, pp. 453-460, 2006/06/30/ 2006, doi: https://doi.org/10.1016/j.robot.2006.02.002. [34] M. Rahayem, J. A. P. Kjellander, and S. Larsson, "Geometric reverse engineering using a laser profile scanner mounted on an industrial robot," in Proceedings of the International Conference of DAAAM Baltic "Industrial Engineering", 2008. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920394697&partnerID=40&md5=83ba68b7e33a91b8e75f556f89df3de5. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920394697&partnerID=40&md5=83ba68b7e33a91b8e75f556f89df3de5 [35] S. Larsson and J. A. P. Kjellander, "Path planning for laser scanning with an industrial robot," Robotics and Autonomous Systems, Article vol. 56, no. 7, pp. 615-624, 2008, doi: 10.1016/j.robot.2007.10.006. [36] "ABB IRB-2600 Product Specification." https://library.e.abb.com/public/57c9bc06c7734c4999a9fb0d621aaa98/3HAC035959%20PS%20IRB%202600-en.pdf?x-sign=YZRAO1stX6FdkZBt7d+DjgWvDFXrRX23cB2yVZt47CWaxrmYqqsE0sjai8J1MckX (accessed. [37] "ABB robot arm EGM function " https://library.e.abb.com/public/4c9bfa6a4e9542bf9386c87f5377a27f/3HAC073319%20AM%20Externally%20Guided%20Motion%20RW6-en.pdf?x-sign=Kve2Y59A3t4v8o7QGi+DRvUsaQVzt9PLH11+w/+P+QmF1rR5Gqby1koPNpaOT5CO (accessed. [38] Krasjet, "四元數與三維旋轉." [Online]. Available: https://krasjet.github.io/quaternion/quaternion.pdf?fbclid=IwAR2gC4R6m7mjG51RJJWr5qLiHLXVKWtjuctND8aFRyihgMyOYppwf-dBgTM. [39] "超高精細線上輪廓感測器 LJ-X8080." https://www.keyence.com.tw/products/measure/laser-2d/lj-x8000/models/lj-x8080/ (accessed. [40] L. Pei_chun. "機器人學課程." https://www.coursera.org/learn/robotics1 (accessed. [41] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics : Modelling, Planning and Control. 2009. [42] J. Denavit and R. S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices," Journal of Applied Mechanics, vol. 22, no. 2, pp. 215-221, 2021, doi: 10.1115/1.4011045. [43] C.-T. Lee and J.-Y. Chang. "光學視覺與機械手臂系統整合之校正方法介紹." https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/226/02260243.pdf (accessed. [44] J. Xu, J. L. Hoo, S. Dritsas, and J. G. Fernandez, "Hand-eye calibration for 2D laser profile scanners using straight edges of common objects," Robotics and Computer-Integrated Manufacturing, vol. 73, p. 102221, 2022/02/01/ 2022, doi: https://doi.org/10.1016/j.rcim.2021.102221. [45] "FARO Vantage specification." https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/2_TECH-SHEET/FARO-Vantage-Laser-Trackers/TechSheet_Vantage_ENG.pdf?rev=-1 (accessed. [46] "Keyence LJ-X8080 specification." [Online]. Available: https://www.keyence.com.tw/products/measure/laser-2d/lj-x8000/models/lj-x8080/. [47] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and R. Siegwart, "A comparison of line extraction algorithms using 2D range data for indoor mobile robotics," Autonomous Robots, vol. 23, no. 2, pp. 97-111, 2007/08/01 2007, doi: 10.1007/s10514-007-9034-y. [48] K. O. Arras. "Basics of LSQ Estimation : Line and Circle Extraction." http://ais.informatik.uni-freiburg.de/teaching/ss09/robotics/slides/feature_extraction.pdf (accessed. [49] "ISO 9283:1998 Manipulating industrial robots — Performance criteria and related test methods," 1998-04. [Online]. Available: https://www.iso.org/standard/22244.html. [50] E. ISO, "9283: 1998," Manipulating industrial robots-Performance criteria and related test methods, 1998. [51] B. Houari, O. Lehmann, c. clévy, N. Courjal, and P. Lutz, "Photo-Robotic Extrinsic Parameters Calibration of 6-DOF Robot for High Positioning Accuracy," IEEE/ASME Transactions on Mechatronics, vol. PP, pp. 1-1, 01/09 2020, doi: 10.1109/TMECH.2020.2965255. [52] T. Rothman, "Genius and biographers: the fictionalization of Evariste Galois," The American Mathematical Monthly, vol. 89, no. 2, pp. 84-106, 1982. [53] H. Abbaspour and M. A. Moskowitz, Basic lie theory. World Scientific, 2007. [54] J. Stillwell, Naive lie theory. Springer Science & Business Media, 2008. [55] K. M. Lynch and F. C. Park, Modern Robotics : Mechanics, Planning and Control. 2017. [56] C. J. Taylor and D. J. Kriegman, "Minimization on the Lie group SO (3) and related manifolds," 1994. [57] A. Bani Younes and D. Mortari, "Derivation of All Attitude Error Governing Equations for Attitude Filtering and Control," (in eng), Sensors (Basel), vol. 19, no. 21, Oct 28 2019, doi: 10.3390/s19214682. [58] "Matlab fmincons Introduction." https://www.mathworks.com/help/optim/ug/fmincon.html (accessed. [59] S. Ebbesen, P. Kiwitz, and L. Guzzella, "A generic particle swarm optimization Matlab function," in 2012 American control conference (ACC), 2012: IEEE, pp. 1519-1524. [60] K. De Jong, "Learning with genetic algorithms: An overview," Machine learning, vol. 3, pp. 121-138, 1988. [61] S. Sarabandi, A. Shabani, J. M. Porta, and F. Thomas, "On Closed-Form Formulas for the 3-D Nearest Rotation Matrix Problem," IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1333-1339, 2020, doi: 10.1109/TRO.2020.2973072. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90570 | - |
| dc.description.abstract | 本文討論了商用型機械手臂的精度問題,指出其在點精度和軌跡精度方面的挑戰性。相比CNC工具機的精度,機械手臂的精度通常較低,這導致在需要高精度的任務中,如焊接、3D列印、點膠、研磨和拋光等,人工教導軌跡點成為一種過度依賴的方法,從而降低了生產效率。
為了提高機械手臂的精度,傳統校正手臂精度是使用雷射追蹤儀,但其價格昂貴、設備架設彈性有限,故本研究提出了一個使用雷射線掃來進行精度優化,來校正精度的流程,該流程包括以下步驟: 1.刀具座標系校正:建立一個準確的刀具座標系,以便後續的量測和校正工作。 2.開發工件座標系校正:設計量具並分析量具尺寸,以減小量測誤差對計算誤差的影響,從而獲得更準確的工件座標系。 3.靜態精度校正:推導線性化誤差模型和非線性化誤差模型,使用最小方差法和最佳化技術計算DH參數的誤差,從而降低靜態精度。 4.動態軌跡精度校正:使用線性脈衝響應模型來減少位置誤差,從數據結果來看,目前的效果有改善空間,提空了後續研究和改進的參考依據。 透過這些校正方法,可以提高機械手臂的精度,從而確保其在不同生產製令單中能夠保持良好的製造精度並減少人力需求。然而,對於動態軌跡精度的校正仍存在挑戰,需要更深入的研究和改進。 此外也提到了雷射追蹤儀作為量測機械手臂誤差的首選儀器,但由於其價格昂貴、設備架設彈性有限,通常只在機械手臂量測後使用。因此考慮到生產過程中的量測需求,研究採用雷射線掃描作為替代方案,以獲得更準確的量測結果。 本研究提供了商用型機械手臂精度校正的流程和方法,旨在改善其點精度和軌跡精度。這將對提高機械手臂在高精度任務中的應用性和生產效率具有重要意義,然而仍需要進一步的研究和改進,特別是在動態軌跡精度的校正方面。 | zh_TW |
| dc.description.abstract | This paper discusses the accuracy issues of commercial robotic arms, highlighting the challenges they face in terms of point precision and trajectory precision. Compared to CNC machine tools, robotic arms generally exhibit lower accuracy, which leads to an overreliance on manual teaching of trajectory points in tasks that require high precision, such as welding, 3D printing, dispensing, grinding, and polishing, thereby reducing production efficiency.
To improve the accuracy of robotic arms, the traditional approach involves using laser trackers for calibration. However, due to their high cost and limited flexibility in equipment setup, this study proposes a calibration process using laser line scanning to optimize accuracy. The process includes the following steps: 1.Tool coordinate system calibration: Establishing an accurate tool coordinate system to facilitate subsequent measurements and calibration work. 2.Development of workpiece coordinate system calibration: Designing gauges and analyzing their dimensions to minimize the influence of measurement errors on calculation errors, thereby obtaining a more accurate workpiece coordinate system. 3.Calibration of static precision: Deriving linearized error models and non-linear error models, utilizing the least squares method and optimization techniques to calculate the errors of Denavit-Hartenberg (DH) parameters, thereby reducing static precision. 4.Calibration of dynamic trajectory precision: Using linear pulse response models to reduce position errors. Although the results did not meet the expectations, they provide a reference for subsequent research and improvement. By employing these calibration methods, the precision of robotic arms can be enhanced, ensuring consistent manufacturing accuracy and reducing the need for manual labor across different production orders. However, challenges remain in calibrating dynamic trajectory precision, requiring further research and improvement. Furthermore, the study mentions that laser trackers are preferred instruments for measuring robotic arm errors. However, their high cost and limited flexibility in equipment setup result in their usual application only after robotic arm measurements are completed. Therefore, considering the measurement needs during the production process, laser line scanning is adopted as an alternative solution to achieve more accurate measurements. This study provides a process and methods for calibrating the accuracy of commercial robotic arms, with the aim of improving their point precision and trajectory precision. This will have significant implications for enhancing the applicability and production efficiency of robotic arms in high-precision tasks. Nevertheless, further research and improvement are required, particularly in the calibration of dynamic trajectory precision. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:40:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:40:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 審定書 i
誌謝 ii 中文摘要 iv ABSTRACT vi 目錄 ix 圖目錄 xiii 表目錄 xviii 符號表 xix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 4 1.3.1 機械手臂 4 1.3.2 線掃描 13 1.4 貢獻 16 1.5 論文架構 17 第二章 實驗平台 18 2.1 硬體架構 18 2.1.1 手臂系統 18 2.1.2 線掃描系統 24 2.2 電腦環境與傳輸 29 2.2.1 手臂傳輸方式 32 2.2.2 線掃描傳輸方式 32 第三章 手臂之前置作業 35 3.1 運動學模型 35 3.1.1 姿態描述 35 3.1.2 順向運動學及逆向運動學 38 3.2 線掃描座標系校正 42 3.3 工件座標系校正 51 第四章 手臂精度校正 56 4.1 量具設計與分析 59 4.1.1 邊緣偵測演算法 59 4.1.2 手臂真實姿態之量測方法 63 4.1.3 量具靈敏度分析 68 4.1.4 手臂精度介紹及補償可能性 77 4.2 點精度(Pose Accuracy)補償 84 4.2.1 Hayati DH參數及條件數 85 4.2.2 手臂DH參數之線性化誤差模型 87 4.2.3 最小方差法校正手臂DH參數(線性化誤差模型) 92 4.2.4 最佳化校正手臂DH參數(線性化誤差模型) 95 4.2.5 手臂DH參數之非線性誤差模型 98 4.2.6 最佳化校正手臂DH參數(非線性化誤差模型) 100 4.3 軌跡精度(Path Accuracy)補償 101 4.3.1 Model-free convolution補償動態軌跡 101 第五章 實驗數據討論與分析 103 5.1 線掃描座標系 103 5.1.1 旋轉矩陣 103 5.1.2 平移矩陣 106 5.2 工件座標系 107 5.2.1 旋轉矩陣 107 5.2.2 平移矩陣 108 5.3 靜態補償結果與分析 108 5.3.1 最小方差法(線性化誤差模型) 108 5.3.2 最佳化(線性化誤差模型) 111 5.3.3 最佳化(非線性誤差模型) 116 5.4 動態補償結果與分析 119 第六章 結論與未來展望 122 6.1 結論 122 6.2 未來展望 123 參考文獻 124 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機械手臂 | zh_TW |
| dc.subject | 線掃描 | zh_TW |
| dc.subject | 精度校正 | zh_TW |
| dc.subject | Accuracy calibration | en |
| dc.subject | Robotic arm | en |
| dc.subject | Laser scanner | en |
| dc.title | 以高精度雷射線掃描校正機械手臂之精度 | zh_TW |
| dc.title | Precision Calibration Technique for a Manipulator Using a High-Accuracy Laser Scanner | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顏炳郎;連豊力 | zh_TW |
| dc.contributor.oralexamcommittee | Ping-Lang Yen;Feng-Li Lian | en |
| dc.subject.keyword | 機械手臂,線掃描,精度校正, | zh_TW |
| dc.subject.keyword | Robotic arm,Laser scanner,Accuracy calibration, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202303404 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
