請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90556完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | zh_TW |
| dc.contributor.advisor | Chi-An Dai | en |
| dc.contributor.author | 林恆毅 | zh_TW |
| dc.contributor.author | Heng-Yi Lin | en |
| dc.date.accessioned | 2023-10-03T16:37:03Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | 1.Blume, A., et al., Silica and silanes. Rubber Compd. Chem. Appl, 2015: p. 251-332.
2.Chang, Y.-S., Improvement of Dynamic Property for Green Tires with Organosilanes and Highly Dispersive Silicas. National Taiwan University, 2020. 3.De-Yu, K., Research on the Effects of New Silane Coupling Agents on the Dynamic Performance of Silica-Filled Tread Compounds. National Taiwan University, 2020. 4.Xu, M., et al., Synergistic Effect by Polyethylene Glycol as Interfacial Modifier in Silane-Modified Silica-Reinforced Composites. Polymers, 2021. 13(5): p. 788. 5.Pei-Xin, S., Fabrication of Silica-Reinforced Rubbers with Novel Additives:Correlation between Filler Structure and Dynamic Property. National Taiwan University, 2021. 6.Ferry, J.D., Viscoelastic properties of polymers. 1980: John Wiley & Sons. 7.Sem, M.T.I., Mechanical behavior of materials. I-Semester, 1999. 3(3). 8.Jayanarayanan, K., N. Rasana, and R.K. Mishra, Dynamic mechanical thermal analysis of polymer nanocomposites, in Thermal and rheological measurement techniques for nanomaterials characterization. 2017, Elsevier. p. 123-157. 9.Wang, M.-J., Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber chemistry and technology, 1998. 71(3): p. 520-589. 10.Williams, M.L., R.F. Landel, and J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, 1955. 77(14): p. 3701-3707. 11.Ueda, E., et al., Dynamic moduli mapping of silica-filled styrene–butadiene rubber vulcanizate by nanorheological atomic force microscopy. Macromolecules, 2018. 52(1): p. 311-319. 12.Lee, H.S., Development of a new solution for viscoelastic wave propagation of pavement structures and its use in dynamic backcalculation. 2013: Michigan State University. 13.Ford, T.L. and F.S. Charles, Heavy duty truck tire engineering. 1988, SAE Technical Paper. 14.Li, Y., et al., Study on dispersion morphology of silica in rubber. Rubber chemistry and technology, 1994. 67(4): p. 693-699. 15.Blume, A., Analytical properties of silica-a key for understanding silica reinforcement. Kautschuk Gummi Kunststoffe, 2000. 53(6): p. 338-344. 16.Payne, A.R., The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. Journal of Applied Polymer Science, 1962. 6(21): p. 368-372. 17.Fröhlich, J., W. Niedermeier, and H.-D. Luginsland, The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites Part A: Applied Science and Manufacturing, 2005. 36(4): p. 449-460. 18.Guth, E., On the hydrodynamical theory of the viscosity of suspensions. Phys. Rev, 1938. 53: p. 322-325. 19.Heinrich, G., M. Klüppel, and T.A. Vilgis, Reinforcement of elastomers. Current opinion in solid state and materials science, 2002. 6(3): p. 195-203. 20.Freund, B. and W. Niedermeier, Molecular interpretation of the Payne-effect and influence of fillers. Kautschuk Gummi Kunststoffe, 1998. 51(6): p. 444-449. 21.Luginsland, H.-D., J. Frohlich, and A. Wehmeier, Influence of different silanes on the reinforcement of silica-filled rubber compounds. Rubber chemistry and technology, 2002. 75(4): p. 563-579. 22.Sahakaro, K., Mechanism of reinforcement using nanofillers in rubber nanocomposites, in Progress in rubber nanocomposites. 2017, Elsevier. p. 81-113. 23.Medalia, A., VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber. J Colloid Interface Sci, 1970. 32(1). 24.Kareaga Laka, Z., Dynamic stiffness and damping prediction on rubber material parts, FEA and experimental correlation. 2016, London Metropolitan University. 25.Gamero Rodriguez, M.d.C., Studies on the rubber-filler interactions in tyre tread compounds. 2016. 26.Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phs. Soc., 1952. 1: p. 123. 27.Champagne, J., et al., Role of glassy bridges on the mechanics of filled rubbers under pressure. Macromolecules, 2020. 53(10): p. 3728-3737. 28.Mattsson, J., J. Forrest, and L. Börjesson, Quantifying glass transition behavior in ultrathin free-standing polymer films. Physical Review E, 2000. 62(4): p. 5187. 29.Montes, H., F. Lequeux, and J. Berriot, Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers. Macromolecules, 2003. 36(21): p. 8107-8118. 30.Hui-En, L., Non-Equilibrium Dynamic Mixing Process and Dispersant Reaction for High Efficiency Green Tires:USAXS Analysis. National Taiwan University, 2018. 31.Mihara, S., Reactive processing of silica-reinforced tire rubber: new insight into the time-and temperature-dependence of silica rubber interaction. 2009. 32.Belton, D.J., O. Deschaume, and C.C. Perry, An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. The FEBS journal, 2012. 279(10): p. 1710-1720. 33.Mijatovic, J., W.H. Binder, and H. Gruber, Characterization of surface modified silica nanoparticles by 29 Si solid state NMR spectroscopy. Microchimica Acta, 2000. 133: p. 175-181. 34.Evans, L.R. and J. Huber, FEATURES-Tech Service: Introduction to mineral fillers for rubber-Non-black fillers are reviewed, along with mineral fillers such as calcium carbonate, crystalline silica, kaolin clay, talc. Rubber World, 2001. 224(1): p. 18-23. 35.Lin, M., et al., Universality in colloid aggregation. Nature, 1989. 339(6223): p. 360-362. 36.Jungblut, S., J.-O. Joswig, and A. Eychmüller, Diffusion-and reaction-limited cluster aggregation revisited. Physical Chemistry Chemical Physics, 2019. 21(10): p. 5723-5729. 37.Sterman, S. and J.G. Marsden, Silane coupling agents. Industrial & Engineering Chemistry, 1966. 58(3): p. 33-37. 38.Reuvekamp, L.A., et al., Effects of time and temperature on the reaction of TESPT silane coupling agent during mixing with silica filler and tire rubber. Rubber chemistry and technology, 2002. 75(2): p. 187-198. 39.Plueddemann, E.P. and E.P. Plueddemann, Nature of adhesion through silane coupling agents. 1991: Springer. 40.Wolff, S., CROSSLINKING OF 1.5-DIENE RUBBERS BY MEANS OF BIS-(3-TRIETHOXYSILYLPROPYL)-TETRASULFIDE. Kautschuk Gummi Kunststoffe, 1977. 30(8): p. 516-523. 41.Hasse, A., et al., Influence of the amount of diand polysulfane silanes on the crosslinking density of silica filled rubber compounds. Kautschuk Gummi Kunststoffe, 2002. 55(5): p. 236-243. 42.Hasse, A. and H. Luginsland. Vulcanization behavior of disulfidic and polysulfidic organic silanes. in IRC Rubber Conference. 2000. 43.Londoño, O.M., et al., Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems. Handbook of materials characterization, 2018: p. 37-75. 44.Ten Brinke, A., Silica reinforced tyre rubbers. Twente University Press. https://ris. utwen te. nl/ws/porta lfiles/portal/60733, 2002. 78: p. t0000. 45.Chen, S.-H. and J. Teixeira, Structure and fractal dimension of protein-detergent complexes. Physical review letters, 1986. 57(20): p. 2583. 46.Ren, Y. and X. Zuo, Synchrotron X‐ray and neutron diffraction, total scattering, and small‐angle scattering techniques for rechargeable battery research. Small Methods, 2018. 2(8): p. 1800064. 47.Tsao, C.-S., Theory of X-ray and Neutron Scattering. 48.Teixeira, J., Small-angle scattering by fractal systems. Journal of Applied Crystallography, 1988. 21(6): p. 781-785. 49.Evmenenko, G., et al., SANS study of surfactant ordering in κ-carrageenan/cetylpyridinium chloride complexes. Polymer, 2001. 42(7): p. 2907-2913. 50.Sapkota, J., Influence of clay modification on curing kinetics of natural rubber nanocomposites. 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90556 | - |
| dc.description.abstract | 在環保及節能減碳日益重要的現今,電動車(electric vehicle或簡稱EV)的發展已成為全球交通運輸之重要趨勢。然而電動車對於輪胎的性能需求更高,因此,本研究為開發更高性能適用於電動車之二氧化矽填充胎面膠(tread)複合材料。
本研究主要分為兩個部分:(1)藉由分析立安東公司所生產之高比表面積與中比表面積二氧化矽顆粒粉末及懸浮水溶液樣品之多層次結構(hierarchical structure),以了解二氧化矽自然狀態之開放結構與其混鍊於橡膠樣品中之關聯性,並分析開放結構對於輪胎動態機械性能的影響。(2)利用實驗室級小型混鍊機(0.2L),將橡膠材料與二氧化矽進行混合,並且加入具備有親水性PEO (poly ethylene oxide)高分子做為新型界面改質劑,並分析改質後之二氧化矽對於多層次結構的影響與其機械性能的變化。 本研究的第一部分主要是分析多層次二氧化矽顆粒粉末及懸浮水溶液樣品之結構,並且觀察二氧化矽在橡膠系統中結構與其機械性能。我們是以新竹同步輻射研究中心(NSRRC-TPS25A1)之超小角度X光散射(USAXS)進行實驗,從散射數據中獲得二氧化矽粉末與懸浮液之基本顆粒大小(primary particle size)以及碎型維度(fractal dimension, Df),此外我們亦可以從散射數據中獲得二氧化矽顆粒在橡膠系統中之階級性結構:基本顆粒大小(primary particle size)、碎型維度(fractal dimension, Df)以及二氧化矽聚集體大小(cluster size)。並且藉由碎型維度的大小可以告訴我們二氧化矽顆粒在自然狀態下的開放結構,若Df越接近3為越緊密,反之,若Df越接近1則越鬆散。而胎面橡膠之機械性能我們是以動態機械分析儀(dynamic mechanical analysis)測量所得之tanδ、儲存模數(storage modulus, G’)及損失模數(loss modulus, G”)以預測胎面橡膠之抓地力(wet grip, WG),滾動阻力(rolling resistance, RR)以及剛性(stiffness, S)。 從實驗結果我們發現高比表面積二氧化矽粉末之碎型維度(~1.5)比中比表面積(~1.7)來的小,因此其聚集結構屬於較為鬆散之結構,也因為較鬆散之結構使其在混鍊的過程中更容易使橡膠高分子與二氧化矽聚集體之內部進行接觸,進而得到分散較好,顆粒較小之結果,而較小之聚集體會得到更少量之圍困橡膠(occluded rubber)進而提升抓地力(WG),也會減少玻璃態橡膠(confined glassy rubber)的形成進而降低滾動阻力(RR)。 而本研究的第二部分主要是分析加入PEG2000作為介面改質劑之胎面橡膠並且比較加入傳統矽烷偶合劑(silane coupling agent)-Si69 (bis(triethoxysilylpropyl) tetrasulfide或簡稱TESPT)之胎面膠之輪胎性質差異。我們是以新竹同步輻射研究中心(NSRRC-TPS25A1)之超小角度X光散射(USAXS)進行實驗,從中我們可以獲取二氧化矽顆粒在橡膠系統中之階級性結構:基本顆粒大小(primary particle size)、碎型維度(fractal dimension, Df)、二氧化矽聚集體大小(cluster size)以及二氧化矽聚集體之平均距離(static correlation length),並結合穿透式電子顯微鏡(transmission electron microscope, TEM)以了解其碎型結構。而胎面橡膠之機械性能我們是以動態機械分析儀(dynamic mechanical analysis)測量所得之tanδ、儲存模數及損失模數以預測胎面橡膠之抓地力(WG),滾動阻力(RR)以及剛性(S)。除此之外,我們也會測量胎面橡膠之潘恩效應(Payne Effect)以了解二氧化矽與橡膠間之相互作用力。 從實驗結果我們發現隨著PEG2000的量增加二氧化矽聚集體會變大,因為EO鏈段會與silica本身之silanol group 形成氫鍵,幫助二氧化矽更加聚集形成較大之聚集體。而因PEG2000形成較大之聚集體會形成較多量之圍困橡膠(occluded rubber)使玻璃轉移溫度(Tg)上升而提升抓地力(WG)之效能,除此之外,也因為聚集體是因氫鍵聚集而成,在給予作用力時會因氫鍵而產生”滑動”使儲存模數下降、損失模數上升,而提升抓地力(WG)。也因為PEG2000會附著在二氧化矽表面,阻礙小尺度(~1nm)下之玻璃態橡膠的形成以降低失模數,因而使滾動阻力(RR)下降。PEG2000改質過後之二氧化矽胎面橡膠之性能皆高於傳統市面上的輪胎配方,且大幅降低輪胎之製造成本,相信本實驗方向與結果會影響輪胎產業使其往更好的方向邁進。 | zh_TW |
| dc.description.abstract | In today's world, with a focus on environmental protection and energy efficiency, the development of electric vehicles (EVs) has become an important trend in global transportation. To meet the higher performance requirements of EVs, this study aims to develop high-performance silica-filled tread rubber compounds suitable for electric vehicles.
The research is divided into two parts. The first part examines the connection between the aggregation structure of silica and the performance of the corresponding silica-filled tread compounds. This is done by analyzing the structures of silica powders with either high or medium specific surface areas (SSA) produced by OSC Company and their aqueous suspension solution. In the second part, lab-scale internal mixers are used to prepare silica-filled tread compounds. Additionally, a hydrophilic polyethylene glycol (PEG) polymer is introduced as a new interface modifier. The effect of the modified silica addition on the hierarchical filler structure on the dynamic performance of the tread compounds is then analyzed. Ultra-small-angle X-ray scattering (USAXS) experiments are conducted to obtain the primary particle size, fractal dimension, and cluster size of silica in the tread compounds. The fractal dimension reflects the openness of silica particles, with a value close to 3 indicating a compact structure and a value close to 1 indicating an open structure. Dynamic mechanical analysis is used to measure tanδ, storage modulus (G'), and loss modulus (G") to predict the wet grip (WG), rolling resistance (RR), and stiffness (S) of the tread rubber. The experimental results show that silica powder with a high SSA has a smaller fractal dimension (Df ~ 1.5) compared with higher Df (Df ~ 1.7) for medium SSA silica, indicating a more open structure (loosed-branched). This open structure facilitates the good dispersion of rubber polymer with silica, resulting in smaller cluster size and reduced occluded rubber and confined glassy rubber, thereby improving wet grip (WG) and reducing rolling resistance (RR). On the other hand, by adding PEG2000 as a modifier, the silica aggregates become larger compared to the traditional silane coupling agent (Si69). Since PEG2000 can induce "sliding effect" between silica particles, it reduces the storage modulus (G') while the clusters become larger and hinders the formation of glassy rubber, thereby improving wet grip (WG) and reducing rolling resistance (RR). In summary, the experimental results of this study demonstrate that high specific surface area silica powder with an open structure, as well as silica-filled tread rubber incorporating a hydrophilic interface modifier, can provide excellent wet grip (WG) and reduced rolling resistance (RR), making them suitable for high-performance applications such as electric vehicles. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:37:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:37:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract v 目錄 viii 圖目錄 xii 表目錄 xix Chapter 1 Introduction 1 1.1 Foreword 1 1.2 Purpose and Motivation of the Experiment 3 Chapter 2 Paper Review 5 2.1 Performance Index of Tread Rubber 5 2.1.1 Dynamic Mechanical Properties 5 2.1.2 The Correlation Between “Magic Triangle” and Dynamic Mechanical Properties - Principle of Time-Temperature Superposition 8 2.2 Interaction Force between Filler and Rubber Network 11 2.2.1 Payne Effect 11 2.2.2 Occluded Rubber and Bound Rubber 16 2.2.3 Glass transition temperature and confined glassy rubber 19 2.3 Silica 23 2.3.1 The Difference between Carbon Black and Silica as Filler 23 2.3.2 Process of Silica 25 2.3.3 Fractal Structure and Surface Chemistry of SiO2 27 2.3.4 Diffusion- and Reaction-Limited Colloidal Aggregation (DLCA and RLCA) 29 2.4 Chemical reaction of silica filled rubber 31 2.4.1 Silane Coupling Agents 31 2.4.2 Silanization Reaction 32 2.5 Small Angle X-ray Scattering (SAXS) 35 2.5.1 Theory of X-ray Scattering 35 2.5.2 Form Factor and Structure Factor 45 2.5.3 Fractal Polysphere Fitting Model 49 2.5.4 Gel Network Fitting Model 54 Chapter 3 Experimental Section 56 3.1 Experimental Instruments 56 3.2 Experimental Materials 57 3.3 Preparation of Experimental Samples 59 3.3.1 Preparation of Silica Suspension Samples 59 3.3.2 Preparation of Tread Rubber Sheet Samples 60 3.4 Experimental Procedures and Measurement Methods 62 3.4.1 Dynamic Mechanical Analysis 62 3.4.2 Small Angle X-ray Scattering (SAXS) 64 3.4.3 Payne Effect 68 Chapter 4 Result and Discussion 69 4.1 Analysis of Silica in Suspension Systems 69 4.1.1 Preparation by Centrifugation 69 4.1.2 Preparation Using Saline Solution as the Solvent 77 4.1.3 Preparation Using Long-Time Ultrasonic Oscillation 82 4.2 Analysis of silica in powder systems 91 4.2.1 High Specific Surface Area Silica 91 4.2.2 Medium Specific Surface Area Silica 94 4.2.3 Result and Discussion 97 4.3 Analysis of silica in rubber systems 99 4.3.1 High Specific Surface Area Silica 100 4.3.2 Medium Specific Surface Area Silica 115 4.4 PEG2000 Modified Silica-Reinforced Tread Rubber 126 4.4.1 Experimental Design 126 4.4.2 Analysis of the Structure of PEG Modified Tread Rubber 128 4.4.3 Analysis of the mechanical properties of PEG modified Tread Rubber 136 4.4.4 Results and Discussion 152 Chapter 5 Conclusion 155 5.1 High and Medium Specific Surface Area Silica 155 5.2 PEG2000 Modified Silica-Reinforced Tread Rubber 156 Appendix 157 References 166 | - |
| dc.language.iso | en | - |
| dc.subject | 矽烷耦合劑 | zh_TW |
| dc.subject | 聚乙二醇 | zh_TW |
| dc.subject | 小角度X光散射 | zh_TW |
| dc.subject | 動態機械分析儀 | zh_TW |
| dc.subject | 潘恩效應 | zh_TW |
| dc.subject | 胎面膠 | zh_TW |
| dc.subject | 二氧化矽 | zh_TW |
| dc.subject | Payne Effect | en |
| dc.subject | Tire Tread | en |
| dc.subject | Silica | en |
| dc.subject | Silane Coupling Agents | en |
| dc.subject | Polyethylene Glycol | en |
| dc.subject | Small Angle X-ray Scattering (SAXS) | en |
| dc.subject | Dynamic Mechanical Properties | en |
| dc.title | 開發適用於電動車之綠色輪胎:探討二氧化矽的層次聚集結構及新型添加劑提升動態性能之研究 | zh_TW |
| dc.title | Development of Green Tires for EVs: Investigation of Hierarchical Aggregation Structure of Silica and New Additives for Improving Dynamic Properties | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 謝之真 | zh_TW |
| dc.contributor.coadvisor | Chih-Chen Hsieh | en |
| dc.contributor.oralexamcommittee | 邱文英;童世煌;曹正熙 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yen Chiu;Shih-Huang Tung;Cheng-Si Tsao | en |
| dc.subject.keyword | 胎面膠,二氧化矽,矽烷耦合劑,聚乙二醇,小角度X光散射,動態機械分析儀,潘恩效應, | zh_TW |
| dc.subject.keyword | Tire Tread,Silica,Silane Coupling Agents,Polyethylene Glycol,Small Angle X-ray Scattering (SAXS),Dynamic Mechanical Properties,Payne Effect, | en |
| dc.relation.page | 172 | - |
| dc.identifier.doi | 10.6342/NTU202303143 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
