請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90554完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志鴻 | zh_TW |
| dc.contributor.advisor | Chih-Hung Chen | en |
| dc.contributor.author | 戴承寧 | zh_TW |
| dc.contributor.author | Chen-Ning Tai | en |
| dc.date.accessioned | 2023-10-03T16:36:33Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | [1] X. Gao, Y.-N. Zhou, D. Han, et al., “Thermodynamic understanding of li-dendrite formation,” Joule, vol. 4, no. 9, pp. 1864–1879, 2020.
[2] H. Cheng, J. G. Shapter, Y. Li, and G. Gao, “Recent progress of advanced anode materials of lithium-ion batteries,” Journal of Energy Chemistry, vol. 57, pp. 451–468, Jun. 2021. [3] X. Min, G. Xu, B. Xie, P. Guan, M. Sun, and G. Cui, “Challenges of prelithiation strategies for next generation high energy lithium-ion batteries,” Energy Storage Materials, vol. 47, no. January, pp. 297–318, 2022. [4] J.-M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” nature, vol. 414, no. 6861, pp. 359–367, 2001. [5] K.-C. Pu, X. Zhang, X.-L. Qu, et al., “Recently developed strategies to restrain dendrite growth of li metal anodes for rechargeable batteries,” Rare Metals, vol. 39, pp. 616–635, 2020. [6] B. Li, Y. Wang, and S. Yang, “A material perspective of rechargeable metallic lithium anodes,” Advanced Energy Materials, vol. 8, no. 13, p. 1 702 296, 2018. [7] P. Albertus, S. Babinec, S. Litzelman, and A. Newman, “Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries,” Nature Energy, vol. 3, no. 1, pp. 16–21, 2018. [8] C. Brissot, M. Rosso, J.-N. Chazalviel, and S. Lascaud, “Dendritic growth mechanisms in lithium/polymer cells,” Journal of power sources, vol. 81, pp. 925–929, 1999. [9] Y. Liu, “Overview of the Recent Progress of Suppressing the Dendritic Growth on Lithium Metal Anode for Rechargeable Batteries,” Journal of Physics: Conference Series, vol. 2152, no. 1, p. 012 060, Jan. 2022. [10] S. Li, Z. Luo, L. Li, et al., “Recent progress on electrolyte additives for stable lithium metal anode,” Energy Storage Materials, vol. 32, pp. 306–319, 2020. [11] R. Zhang, X. Shen, H. T. Ju, J. D. Zhang, Y. T. Zhang, and J. Q. Huang, “Driving lithium to deposit inside structured lithium metal anodes: A phase field model,” Journal of Energy Chemistry, vol. 73, pp. 285–291, 2022. [12] B. Ravikumar, M. Mynam, and B. Rai, “Effect of salt concentration on properties of lithium ion battery electrolytes: A molecular dynamics study,” Journal of Physical Chemistry C, vol. 122, no. 15, pp. 8173–8181, Apr. 2018. [13] P. Ye, D. Liu, X. Cai, et al., “Sns2 quantum dot as bifunctional “electrolyte additive” for lithium metal anode,” Applied Surface Science, vol. 620, p. 156 849, 2023. [14] C. Wang, H. Liu, Y. Liang, et al., “Molecular-level designed polymer electrolyte for high-voltage lithium–metal solid-state batteries,” Advanced Functional Materials, vol. 33, no. 3, p. 2 209 828, 2023. [15] W. Liao, H. Chen, Y. Zeng, and L. Liu, “Recent progress in the fabrication of nanos- tructured zinc-based ternary metal oxides for high-performance lithium-ion batteries,” Journal of Applied Electrochemistry, pp. 1–32, 2023. [16] Y. Liu, X. Xu, O. O. Kapitanova, et al., “Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes,” Advanced Energy Materials, vol. 12, no. 9, p. 2 103 589, 2022. [17] T. Foroozan, S. Sharifi-Asl, and R. Shahbazian-Yassar, “Mechanistic understanding of li dendrites growth by in-situ/operando imaging techniques,” Journal of Power Sources, vol. 461, p. 228 135, 2020. [18] X. Xu, Y. Liu, J. Y. Hwang, et al., “Role of Li-Ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode,” Advanced Energy Materials, vol. 10, no. 44, pp. 1–10, 2020. [19] P. Bai, J. Li, F. R. Brushett, and M. Z. Bazant, “Transition of lithium growth mechanisms in liquid electrolytes,” Energy and Environmental Science, vol. 9, no. 10, pp. 3221–3229, Oct. 2016. [20] M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, “A review of conduction phenomena in Li-ion batteries,” Journal of Power Sources, vol. 195, no. 24, pp. 7904–7929, 2010. [21] Y. Li, L. Sha, G. Zhang, et al., “Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries,” Chinese Chemical Letters, vol. 34, no. 2, Feb. 2023. [22] D. Qiao, X. Liu, R. Dou, Z. Wen, W. Zhou, and L. Liu, “Quantitative analysis of the inhibition effect of rising temperature and pulse charging on Lithium dendrite growth,” Journal of Energy Storage, vol. 49, p. 104 137, May 2022. [23] O. Borodin, J. Self, K. A. Persson, C. Wang, and K. Xu, “Uncharted waters: Super- concentrated electrolytes,” Joule, vol. 4, no. 1, pp. 69–100, 2020. [24] Y. Watanabe, Y. Ugata, K. Ueno, M. Watanabe, and K. Dokko, “Does li-ion transport occur rapidly in localized high-concentration electrolytes?” Physical Chemistry Chemical Physics, vol. 25, no. 4, pp. 3092–3099, 2023. [25] B. Ravikumar, M. Mynam, and B. Rai, “Effect of salt concentration on properties of lithium ion battery electrolytes: A molecular dynamics study,” The Journal of Physical Chemistry C, vol. 122, no. 15, pp. 8173–8181, 2018. [26] G. Jiang, F. Li, H. Wang, et al., “Perspective on high-concentration electrolytes for lithium metal batteries,” Small Structures, vol. 2, no. 5, p. 2 000 122, 2021. [27] Y. Yamada, J. Wang, S. Ko, E. Watanabe, and A. Yamada, “Advances and issues in developing salt-concentrated battery electrolytes,” Nature Energy, vol. 4, no. 4, pp. 269–280, 2019. [28] Y. Yamada, K. Furukawa, K. Sodeyama, et al., “Unusual stability of acetonitrile- based superconcentrated electrolytes for fast-charging lithium-ion batteries,” Journal of the American Chemical Society, vol. 136, no. 13, pp. 5039–5046, 2014. [29] Y. Yamada and A. Yamada, “Superconcentrated electrolytes for lithium batteries,” Journal of The Electrochemical Society, vol. 162, no. 14, A2406, 2015. [30] R. Petibon, C. Aiken, L. Ma, D. Xiong, and J. Dahn, “The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for li-ion batteries,” Electrochimica Acta, vol. 154, pp. 287–293, 2015. [31] J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, and A. Yamada, “Superconcentrated electrolytes for a high-voltage lithium-ion battery,” Nature com- munications, vol. 7, no. 1, p. 12 032, 2016. [32] D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle, and W. A. Henderson, “Concentrated electrolytes: Decrypting electrolyte properties and re- assessing al corrosion mechanisms,” Energy & Environmental Science, vol. 7, no. 1, pp. 416–426, 2014. [33] K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, and M. Watanabe, “Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis (trifluoromethanesulfonyl) amide and glymes,” The Journal of Physical Chem- istry C, vol. 115, no. 37, pp. 18 384–18 394, 2011. [34] G. Liu, M. Xia, J. Gao, et al., “Dual-salt localized high-concentration electrolyte for long cycle life silicon-based lithium-ion batteries,” ACS Applied Materials & Interfaces, 2023. [35] W. Liu, J. Li, W. Li, H. Xu, C. Zhang, and X. Qiu, “Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte,” Nature Communications, vol. 11, no. 1, p. 3629, 2020. [36] X. Fan, X. Ji, L. Chen, et al., “All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents,” Nature Energy, vol. 4, no. 10, pp. 882–890, 2019. [37] L. Liang, Y. Qi, F. Xue, S. Bhattacharya, S. J. Harris, and L. Q. Chen, “Nonlinear phase-field model for electrode-electrolyte interface evolution,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 86, no. 5, p. 051 609, Nov. 2012. [38] C.-J. Ko, C.-H. Chen, and K.-C. Chen, “Influence of inhomogeneity of lithium- ion transport within the anode/electrolyte interface on mossy lithium formation,” Journal of Power Sources, vol. 563, p. 232 779, Apr. 2023. [39] X. Shen, R. Zhang, P. Shi, X. Chen, and Q. Zhang, “How does external pressure shape li dendrites in li metal batteries?” Advanced Energy Materials, vol. 11, no. 10, p. 2 003 416, 2021. [40] L. Liang and L. Q. Chen, “Nonlinear phase field model for electrodeposition in electrochemical systems,” Applied Physics Letters, vol. 105, no. 26, 2014. [41] H.-W. Zhang, Z. Liu, L. Liang, et al., “Understanding and Predicting the Lithium Dendrite Formation in Li-Ion Batteries: Phase Field Model,” ECS Transactions, vol. 61, no. 8, pp. 1–9, Sep. 2014. [42] L. Chen, H. W. Zhang, L. Y. Liang, et al., “Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model,” Journal of Power Sources, vol. 300, pp. 376–385, Dec. 2015. [43] Z. Hong and V. Viswanathan, “Phase-Field Simulations of Lithium Dendrite Growth with Open-Source Software,” ACS Energy Letters, vol. 3, no. 7, pp. 1737–1743, Jul. 2018. [44] W. Mu, X. Liu, Z. Wen, and L. Liu, “Numerical simulation of the factors affecting the growth of lithium dendrites,” Journal of Energy Storage, vol. 26, p. 100 921, Dec. 2019. [45] L. Gao and Z. Guo, “Phase-field simulation of Li dendrites with multiple parameters influence,” Computational Materials Science, vol. 183, p. 109 919, Oct. 2020. [46] C.-H. Chen and C.-W. Pao, “Phase-field study of dendritic morphology in lithium metal batteries,” Journal of Power Sources, vol. 484, no. October 2020, p. 229 203, 2021. [47] J. Jeon, G. H. Yoon, T. Vegge, and J. H. Chang, “Phase-Field Investigation of Lithium Electrodeposition at Different Applied Overpotentials and Operating Temperatures,” ACS Applied Materials and Interfaces, vol. 14, no. 13, 2022. [48] L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5. Elsevier, 2013, vol. 5. [49] D. A. Cogswell, “Quantitative phase-field modeling of dendritic electrodeposition,” Physical Review E, vol. 92, no. 1, p. 011 301, 2015. [50] Z. Liu, Y. Li, Y. Ji, et al., “Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations,” Cell Reports Physical Science, vol. 2, no. 1, p. 100 294, 2021. [51] D. R. Ely, A. Jana, and R. E. Garcı́a, “Phase field kinetics of lithium electrodeposits,” Journal of Power Sources, vol. 272, pp. 581–594, 2014. [52] C.-H. Chen and C.-W. Pao, “Phase-field study of dendritic morphology in lithium metal batteries,” Journal of Power Sources, vol. 484, p. 229 203, 2021. [53] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, “Phase-field simulation of solidification,” Annual review of materials research, vol. 32, no. 1, pp. 163– 194, 2002. [54] S.-J. Chang, C.-H. Chen, and K.-C. Chen, “Assessment of the mechanical suppression of nonuniform electrodeposition in lithium metal batteries,” Physical Chemistry Chemical Physics, vol. 24, no. 18, pp. 11 086–11 095, 2022. [55] Y. Liu, X. Xu, M. Sadd, et al., “Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal,” Advanced Science, vol. 8, no. 5, p. 2 003 301, 2021. [56] C. H. Hamann, A. Hamnett, and W. Vielstich, “Electrode potentials and double- layer structure at phase boundaries,” Electrochemistry, 2007. [57] A. J. Bard, L. R. Faulkner, and H. S. White, Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022. [58] P. Arora, M. Doyle, and R. E. White, “Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes,” Journal of The Electrochemical Society, vol. 146, no. 10, p. 3543, 1999. [59] C. G. Zoski, Handbook of electrochemistry. Elsevier, 2006. [60] Q. Cheng, L. Wei, Z. Liu, et al., “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nature communications, vol. 9, no. 1, p. 2942, 2018. [61] A. Einstein, “Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen,” Annalen der Physik, vol. 322, no. 8, pp. 549–560, 1905. [62] A. Nakanishi, K. Ueno, D. Watanabe, et al., “Sulfolane-based highly concentrated electrolytes of lithium bis (trifluoromethanesulfonyl) amide: Ionic transport, li-ion coordination, and li–s battery performance,” The Journal of Physical Chemistry C, vol. 123, no. 23, pp. 14 229–14 238, 2019. [63] A. Ehrl, J. Landesfeind, W. A. Wall, and H. A. Gasteiger, “Determination of transport parameters in liquid binary lithium ion battery electrolytes,” Journal of The Electrochemical Society, vol. 164, no. 4, A826, 2017. [64] J. Landesfeind and H. A. Gasteiger, “Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes,” Journal of The Electrochemical Society, vol. 166, no. 14, A3079–A3097, Sep. 2019. [65] S. A. Krachkovskiy, J. D. Bazak, S. Fraser, I. C. Halalay, and G. R. Goward, “Determination of mass transfer parameters and ionic association of LiPF6: organic carbonates solutions,” Journal of The Electrochemical Society, vol. 164, no. 4, A912, 2017. [66] L. Edman, A. Ferry, and G. Orädd, “Analysis of diffusion in a solid polymer electrolyte in the context of a phase-separated system,” Physical Review E, vol. 65, no. 4, p. 042 803, 2002. [67] X. Wang, G. M. Girard, H. Zhu, et al., “Poly (ionic liquid) s/electrospun nanofiber composite polymer electrolytes for high energy density and safe li metal batteries,” ACS Applied Energy Materials, vol. 2, no. 9, pp. 6237–6245, 2019. [68] A. V. Karatrantos, M. S. Khan, C. Yan, et al., “Ion Transport in Organic Electrolyte Solutions for Lithium-ion Batteries and Beyond,” Journal of Energy and Power Technology, vol. 03, no. 03, pp. 1–1, May 2021. [69] K. Dokko, D. Watanabe, Y. Ugata, et al., “Direct evidence for li ion hopping conduction in highly concentrated sulfolane-based liquid electrolytes,” The Journal of Physical Chemistry B, vol. 122, no. 47, pp. 10 736–10 745, 2018. [70] H. J. Sand, “Iii. on the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 1, no. 1, pp. 45–79, 1901. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90554 | - |
| dc.description.abstract | 一直以來,鋰金屬電池被認為是高能量密度之可充電電池的候選之一。然而,負極/電解質界面的不穩定反應導致鋰金屬電池在充電過程中無法避免形成鋰枝晶(dendrites)。近來,高濃度電解質(highly concentrated electrolytes, HCEs)因其在沉積過程中能減輕負極表面鋰離子消耗進而抑制鋰枝晶生長而引起了人們的關注。然而因其傳輸性質與濃度高度相依,對枝晶形成的影響仍在研究中。
本研究使用穩態濃差極化(steady-state concentration polarization)的數學模型以及一系列相場(phase-field)模擬之動態分析,研究了HCEs中濃度相依的傳輸性質對鋰枝晶形成的影響。經由穩態分析給出了HCEs在長期沉積過程中電解液濃度的分佈,並透過在模型中引入參數β以量化濃度對擴散係數的相依性,我們解得考慮濃度相依性擴散係數的濃度分佈和極限電流密度(limiting current density)的解析解,並進一步指出極限電流密度和Sand的解析解的偏差是β和初始濃度C0的函數。此外,數值模擬表明,無因次參數βC0較大時在電極附近的濃度下降有初始和緩、隨後急劇下降的趨勢,最終在較短的時間內逼近最終值。最後,以相場模擬不均勻的負極表面上的沉積趨勢,證實本研究所推導的極限電流密度是不均勻沉積的關鍵指標。我們相信這項研究為理解HCEs的行為提供了新想法,並且為未來相關的鋰枝晶形成的研究提供一些靈感。 | zh_TW |
| dc.description.abstract | Lithium metal batteries (LMBs) have long been regarded as one of the promising candidates for high-energy-density rechargeable batteries. However, the unstable reaction at the anode/electrolyte interface results in Li-dendrite formation in LMBs during the charging process. Recently, highly concentrated electrolytes (HCEs) have garnered attention in LMBs due to their ability to mitigate lithium-ion depletion at the anode surface during the deposition process and thus inhibit dendrite formation. However, the transport properties of HCEs are highly concentration-dependent. The exact influence on dendrite formation is still under investigation.
This study investigates the influence of the concentration-dependent transport properties in HCEs on the formation of Li-dendrite using a mathematical model of steady-state concentration polarization along with a series of phase-field simulations for dynamic analysis. Steady-state analysis reveals the variations in the electrolyte profile during the long-term deposition. Via the mathematical model with the introduction of a parameter β to quantify the dependence of concentration on diffusivity, an analytical solution for the concentration profile and limiting current density considering the concentration-dependent diffusivity is obtained. We further indicate that the deviation of limiting current density and Sand's solution is a function of β and C0. Moreover, numerical simulations reveal that the concentration near the electrode for higher dimensionless βC0 exhibits a gentler initial decrease followed by a steeper drop, ultimately reaching the final value in a shorter time. Finally, the phase-field simulation of the deposition trend on the non-homogeneous anode geometry confirms that the limiting current density derived in this study is a key indicator of non-uniform deposition. We believe that this study presents a methodology for comprehending the electrolyte behavior of HCEs and may offer inspiration for future investigations in Li-dendrite formation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:36:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:36:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents v List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 From Li-Ion Batteries to Li-Metal Batteries 1 1.2 Challenges of Li-Metal Batteries: Dendrite Formation 2 1.3 Crucial Role of Electrolyte Transport Properties in Dendrite Formation 3 1.4 Advantages of HCEs for Li-Metal Batteries 4 1.5 Thesis Structure 5 Chapter 2 Theory and Literature Review 7 2.1 Phase-Field Model 7 2.1.1 Ginzburg-Landau Free Energy 8 2.1.2 Evolution of Conservative Field & Non-Conservative Field 9 2.1.3 One-Dimensional Steady-State Solution of Allen-Cahn Equation 9 2.1.4 Allen-Cahn Equation of Lithium Deposition 10 2.1.5 Butler-Volmer Equation 13 2.2 Literature Review of Li-Deposition Models 14 Chapter 3 Methodology 17 3.1 Structure 17 3.1.1 Butler–Volmer Equation 17 3.1.2 Ionic Migration and Diffusion Equations 18 3.2 Non-Homogeneous Diffusivity 19 3.3 Non-Dimensionalization of Governing Equations 20 3.4 Modeling 22 3.4.1 Governing Equations 22 3.4.2 Successive Over-Relaxation (SOR) 23 3.4.3 Compute Unified Device Architecture (CUDA) 24 3.4.4 Flow Chart 26 3.4.5 Initial & Boundary Conditions 27 3.4.6 Simulation Parameters 27 Chapter 4 Results and Discussion 29 4.1 Characteristic Diffusivities 29 4.2 Steady-State Ion Concentration Polarization 30 4.3 Simulation Results 34 4.3.1 Model Validation 34 4.3.2 Simulation of The Transient State 36 4.3.3 Reliability of Steady-State Analysis 38 4.3.4 Non-Homogeneous Anode Geometry 40 Chapter 5 Conclusion & Future Work 43 5.1 Conclusion 43 5.2 Future Work 44 References 46 | - |
| dc.language.iso | en | - |
| dc.subject | 相場法 | zh_TW |
| dc.subject | 鋰金屬電池 | zh_TW |
| dc.subject | 高濃度電解液 | zh_TW |
| dc.subject | 質傳 | zh_TW |
| dc.subject | 鋰離子耗盡 | zh_TW |
| dc.subject | 極限電流密度 | zh_TW |
| dc.subject | highly concentrated electrolytes | en |
| dc.subject | lithium metal batteries | en |
| dc.subject | phase-field method | en |
| dc.subject | limiting current density | en |
| dc.subject | depletion of lithium ions | en |
| dc.subject | mass-transfer | en |
| dc.title | 高濃度電解質的傳輸性質對於鋰枝晶生長之影響 | zh_TW |
| dc.title | Influence of Transport Properties of Highly Concentrated Electrolytes on Li-Dendrite Growth | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳國慶 | zh_TW |
| dc.contributor.coadvisor | Kuo-Ching Chen | en |
| dc.contributor.oralexamcommittee | 舒貽忠;周鼎贏;林祺皓 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chung Shu;Dean Chou;Chi-Hao Lin | en |
| dc.subject.keyword | 鋰金屬電池,高濃度電解液,質傳,鋰離子耗盡,極限電流密度,相場法, | zh_TW |
| dc.subject.keyword | lithium metal batteries,highly concentrated electrolytes,mass-transfer,depletion of lithium ions,limiting current density,phase-field method, | en |
| dc.relation.page | 53 | - |
| dc.identifier.doi | 10.6342/NTU202302875 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2026-07-31 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2026-07-31 | 9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
