Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王宗興zh_TW
dc.contributor.advisorTsung-Shing Andrew Wangen
dc.contributor.author陳英瑋zh_TW
dc.contributor.authorYing-Wei Chenen
dc.date.accessioned2023-10-03T16:36:17Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationWu, X.; Li, Z.; Chen, X.-X.; Fossey, J. S.; James, T. D.; Jiang, Y.-B., Selective sensing of saccharides using simple boronic acids and their aggregates. Chemical Society Reviews 2013, 42 (20), 8032-8048.
Akgun, B.; Hall, D. G., Boronic Acids as Bioorthogonal Probes for Site‐Selective Labeling of Proteins. Angewandte Chemie International Edition 2018, 57 (40), 13028-13044.
António, J. P.; Russo, R.; Carvalho, C. P.; Cal, P. M.; Gois, P. M., Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chemical Society Reviews 2019, 48 (13), 3513-3536.
Williams, G. T.; Kedge, J. L.; Fossey, J. S., Molecular boronic acid-based saccharide sensors. ACS sensors 2021, 6 (4), 1508-1528.
Lorand, J. P.; EDWARDS, J. O., Polyol complexes and structure of the benzeneboronate ion. The Journal of Organic Chemistry 1959, 24 (6), 769-774.
Yang, W.; Gao, X.; Wang, B., Boronic acid compounds as potential pharmaceutical agents. Medicinal research reviews 2003, 23 (3), 346-368.
Trippier, P. C.; McGuigan, C., Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm 2010, 1 (3), 183-198.
Baker, S. J.; Tomsho, J. W.; Benkovic, S. J., Boron-containing inhibitors of synthetases. Chemical Society Reviews 2011, 40 (8), 4279-4285.
Plescia, J.; Moitessier, N., Design and discovery of boronic acid drugs. European journal of medicinal chemistry 2020, 195, 112270.
Malouff, T. D.; Seneviratne, D. S.; Ebner, D. K.; Stross, W. C.; Waddle, M. R.; Trifiletti, D. M.; Krishnan, S., Boron neutron capture therapy: A review of clinical applications. Frontiers in oncology 2021, 11, 601820.
Nishikawa, M.; Kang, H. G.; Zou, Y.; Takeuchi, H.; Matsuno, N.; Suzuki, M.; Komatsu, N., Conjugation of phenylboronic acid moiety through multistep organic transformations on nanodiamond surface for an anticancer nanodrug for boron neutron capture therapy. Bulletin of the Chemical Society of Japan 2021, 94 (9), 2302-2312.
Kim, A.; Suzuki, M.; Matsumoto, Y.; Fukumitsu, N.; Nagasaki, Y., Non-isotope enriched phenylboronic acid-decorated dual-functional nano-assembles for an actively targeting BNCT drug. Biomaterials 2021, 268, 120551.
Bachelier, N.; Verchere, J.-F., Formation of neutral complexes of boric acid with 1, 3-diols in organic solvents and in aqueous solution. Polyhedron 1995, 14 (13-14), 2009-2017.
Springsteen, G.; Wang, B., Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chemical Communications 2001, (17), 1608-1609.
Jabbour, A.; Steinberg, D.; Dembitsky, V. M.; Moussaieff, A.; Zaks, B.; Srebnik, M., Synthesis and evaluation of oxazaborolidines for antibacterial activity against Streptococcus mutans. Journal of medicinal chemistry 2004, 47 (10), 2409-2410.
Galbraith, E.; Kelly, A. M.; Fossey, J. S.; Kociok-Koehn, G.; Davidson, M. G.; Bull, S. D.; James, T. D., Dynamic covalent self-assembled macrocycles prepared from 2-formyl-aryl-boronic acids and 1, 2-amino alcohols. New Journal of Chemistry 2009, 33 (1), 181-185.
Wang, L.; Xie, S.; Ma, L.; Chen, Y.; Lu, W., 10-Boronic acid substituted camptothecin as prodrug of SN-38. European journal of medicinal chemistry 2016, 116, 84-89.
Bielec, B.; Poetsch, I.; Ahmed, E.; Heffeter, P.; Keppler, B. K.; Kowol, C. R., Reactive Oxygen Species (ROS)-Sensitive Prodrugs of the Tyrosine Kinase Inhibitor Crizotinib. Molecules 2020, 25 (5), 1149.
Miyaura, N.; Suzuki, A., Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews 1995, 95 (7), 2457-2483.
Stubelius, A.; Lee, S.; Almutairi, A., The chemistry of boronic acids in nanomaterials for drug delivery. Accounts of chemical research 2019, 52 (11), 3108-3119.
Zhao, D.; Xu, J.-Q.; Yi, X.-Q.; Zhang, Q.; Cheng, S.-X.; Zhuo, R.-X.; Li, F., pH-activated targeting drug delivery system based on the selective binding of phenylboronic acid. ACS applied materials & interfaces 2016, 8 (23), 14845-14854.
Zhu, J.; Huo, Q.; Xu, M.; Yang, F.; Li, Y.; Shi, H.; Niu, Y.; Liu, Y., Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 2018, 10 (38), 18387-18397.
Hu, X.; Chai, Z.; Lu, L.; Ruan, H.; Wang, R.; Zhan, C.; Xie, C.; Pan, J.; Liu, M.; Wang, H., Bortezomib dendrimer prodrug‐based nanoparticle system. Advanced Functional Materials 2019, 29 (14), 1807941.
Suzuki, M., Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. International journal of clinical oncology 2020, 25 (1), 43-50.
Lamba, M.; Goswami, A.; Bandyopadhyay, A., A periodic development of BPA and BSH based derivatives in boron neutron capture therapy (BNCT). Chemical Communications 2021, 57 (7), 827-839.
Kane, R. C.; Farrell, A. T.; Sridhara, R.; Pazdur, R., United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clinical Cancer Research 2006, 12 (10), 2955-2960.
Groll, M.; Berkers, C. R.; Ploegh, H. L.; Ovaa, H., Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 2006, 14 (3), 451-456.
Chen, D.; Frezza, M.; Schmitt, S.; Kanwar, J.; P Dou, Q., Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Current cancer drug targets 2011, 11 (3), 239-253.
Shirley, M., Ixazomib: first global approval. Drugs 2016, 76, 405-411.
Muz, B.; Ghazarian, R. N.; Ou, M.; Luderer, M. J.; Kusdono, H. D.; Azab, A. K., Spotlight on ixazomib: potential in the treatment of multiple myeloma. Drug design, development and therapy 2016, 217-226.
Baker, S. J.; Zhang, Y.-K.; Akama, T.; Lau, A.; Zhou, H.; Hernandez, V.; Mao, W.; Alley, M.; Sanders, V.; Plattner, J. J., Discovery of a new boron-containing antifungal agent, 5-fluoro-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. Journal of medicinal chemistry 2006, 49 (15), 4447-4450.
Jinna, S.; Finch, J., Spotlight on tavaborole for the treatment of onychomycosis. Drug design, development and therapy 2015, 9, 6185.
Akama, T.; Baker, S. J.; Zhang, Y.-K.; Hernandez, V.; Zhou, H.; Sanders, V.; Freund, Y.; Kimura, R.; Maples, K. R.; Plattner, J. J., Discovery and structure–activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis. Bioorganic & medicinal chemistry letters 2009, 19 (8), 2129-2132.
Livermore, D. M.; Mushtaq, S., Activity of biapenem (RPX2003) combined with the boronate β-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. Journal of antimicrobial chemotherapy 2013, 68 (8), 1825-1831.
James, T. D.; Sandanayake, K. S.; Iguchi, R.; Shinkai, S., Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. Journal of the American Chemical Society 1995, 117 (35), 8982-8987.
Stephenson-Brown, A.; Yong, S.; Mansor, M. H.; Hussein, Z.; Yip, N.-C.; Mendes, P. M.; Fossey, J. S.; Rawson, F. J., Electronic communication of cells with a surface mediated by boronic acid saccharide interactions. Chemical Communications 2015, 51 (97), 17213-17216.
Stolowitz, M. L.; Ahlem, C.; Hughes, K. A.; Kaiser, R. J.; Kesicki, E. A.; Li, G.; Lund, K. P.; Torkelson, S. M.; Wiley, J. P., Phenylboronic acid− salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjugate Chemistry 2001, 12 (2), 229-239.
Shin, S. B. Y.; Almeida, R. D.; Gerona-Navarro, G.; Bracken, C.; Jaffrey, S. R., Assembling ligands in situ using bioorthogonal boronate ester synthesis. Chemistry & biology 2010, 17 (11), 1171-1176.
Akgun, B.; Li, C.; Hao, Y.; Lambkin, G.; Derda, R.; Hall, D. G., Synergic “click” boronate/thiosemicarbazone system for fast and irreversible bioorthogonal conjugation in live cells. Journal of the American Chemical Society 2017, 139 (40), 14285-14291.
Spicer, C. D.; Triemer, T.; Davis, B. G., Palladium-mediated cell-surface labeling. Journal of the American Chemical Society 2012, 134 (2), 800-803.
Kitano, S.; Koyama, Y.; Kataoka, K.; Okano, T.; Sakurai, Y., A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. Journal of controlled release 1992, 19 (1-3), 161-170.
Scarano, W.; Duong, H. T.; Lu, H.; De Souza, P. L.; Stenzel, M. H., Folate conjugation to polymeric micelles via boronic acid ester to deliver platinum drugs to ovarian cancer cell lines. Biomacromolecules 2013, 14 (4), 962-975.
Lee, S.; Stubelius, A.; Hamelmann, N.; Tran, V.; Almutairi, A., Inflammation-responsive drug-conjugated dextran nanoparticles enhance anti-inflammatory drug efficacy. ACS applied materials & interfaces 2018, 10 (47), 40378-40387.
Springsteen, G.; Wang, B., A detailed examination of boronic acid–diol complexation. Tetrahedron 2002, 58 (26), 5291-5300.
Yan, J.; Springsteen, G.; Deeter, S.; Wang, B., The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron 2004, 60 (49), 11205-11209.
Roy, C. D.; Brown, H. C., A comparative study of the relative stability of representative chiral and achiral boronic esters employing transesterification. Monatshefte für Chemie-Chemical Monthly 2007, 138 (9), 879-887.
Bernardini, R.; Oliva, A.; Paganelli, A.; Menta, E.; Grugni, M.; Munari, S. D.; Goldoni, L., Stability of boronic esters to hydrolysis: a comparative study. Chemistry letters 2009, 38 (7), 750-751.
Bochet, C. G., Photolabile protecting groups and linkers. Journal of the Chemical Society, Perkin Transactions 1 2002, (2), 125-142.
Yang, Y.; Mu, J.; Xing, B., Photoactivated drug delivery and bioimaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2017, 9 (2), e1408.
Shao, Q.; Jiang, T.; Ren, G.; Cheng, Z.; Xing, B., Photoactivable bioluminescent probes for imaging luciferase activity. Chemical communications 2009, (27), 4028-4030.
Fan, N. C.; Cheng, F. Y.; Ho, J. a. A.; Yeh, C. S., Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light‐responsive tumor‐targeting molecule. Angewandte Chemie 2012, 124 (35), 8936-8940.
Okamura, H.; Iida, M.; Kaneyama, Y.; Nagatsugi, F., o-Nitrobenzyl Oxime Ethers Enable Photoinduced Cyclization Reaction to Provide Phenanthridines under Aqueous Conditions. Organic letters 2023, 25 (3), 466-470.
Nepali, K.; Lee, H.-Y.; Liou, J.-P., Nitro-group-containing drugs. Journal of medicinal chemistry 2018, 62 (6), 2851-2893.
Denny, W. A., Nitroaromatic hypoxia-activated prodrugs for cancer therapy. Pharmaceuticals 2022, 15 (2), 187.
Cui, L.; Zhong, Y.; Zhu, W.; Xu, Y.; Du, Q.; Wang, X.; Qian, X.; Xiao, Y., A new prodrug-derived ratiometric fluorescent probe for hypoxia: high selectivity of nitroreductase and imaging in tumor cell. Organic letters 2011, 13 (5), 928-931.
Peng, X.; Gao, J.; Yuan, Y.; Liu, H.; Lei, W.; Li, S.; Zhang, J.; Wang, S., Hypoxia-activated and indomethacin-mediated theranostic prodrug releasing drug on-demand for tumor imaging and therapy. Bioconjugate Chemistry 2019, 30 (11), 2828-2843.
Yarolimek, M. R.; Coia, B. M.; Bookbinder, H. R.; Kennemur, J. G., Investigating the effect of α-pinene on the ROMP of δ-pinene. Polymer Chemistry 2021, 12 (35), 5048-5058.
Mc Murry, J. E.; Scott, W. J., A method for the regiospecific synthesis of enol triflates by enolate trapping. Tetrahedron Letters 1983, 24 (10), 979-982.
Crisp, G.; Scott, W. J.; Stille, J. K., Palladium-catalyzed carbonylative coupling of vinyl triflates with organostannanes. A total synthesis of (.+-.)-. DELTA. 9 (12)-capnellene. Journal of the American Chemical Society 1984, 106 (24), 7500-7506.
Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan, K.-S.; Faron, K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray, C. K., A regioselective entry to vinyl lithiums from unsymmetrical ketones via enol triflates. The Journal of Organic Chemistry 1986, 51 (2), 277-279.
Wu, S.; Waugh, W.; Stella, V. J., Degradation pathways of a peptide boronic acid derivative, 2‐Pyz‐(CO)‐Phe‐Leu‐B(OH)2. Journal of pharmaceutical sciences 2000, 89 (6), 758-765.
Meng, X.; Zhang, X.; Liu, M.; Cai, B.; He, N.; Wang, Z., Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today 2020, 21, 100864.
Kwon, D. H.; Cha, H.-J.; Lee, H.; Hong, S.-H.; Park, C.; Park, S.-H.; Kim, G.-Y.; Kim, S.; Kim, H.-S.; Hwang, H.-J., Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants 2019, 8 (4), 82.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90553-
dc.description.abstract近年來,硼酸在化學生物學以及生物醫學中的應用逐漸受到重視。在醫療上,硼可做為癌症放射治療的重要試劑。此外,美國食品藥物管理局至今也已批准了五樣硼酸藥物。在化學生物學中,硼酸可作為醣類傳感器、生物正交探針以及藥物運送奈米粒子。然而,硼酸也會和生物體中其他親核基形成非專一性結合,進而造成脫靶效應,限制其在生物體內的應用。
在本研究中,我們設計了由δ-蒎烯雙醇衍伸的可控侷限硼酸保護基,進而在特定條件下釋放硼酸分子,以增加其對生物標靶的專一性。為了進一步實現可控釋放,我們在δ-蒎烯雙醇上引入了觸發單元,分別為4-(2-硝基苄氧基)苯基與4-(4-硝基苄氧基)苯基。當此兩種觸發單元經由觸發後,可生成不穩定的酚,進而釋放出硼酸分子。此外,我們也探討了pH值以及取代基的立體障礙對於δ-蒎烯雙醇衍生物所形成硼酯的穩定性影響。結果顯示,將苯環作為立體障礙引入δ-蒎烯雙醇,對於形成的硼酯抗水解能力至關重要,進而使硼酯在廣泛的 pH 值條件下仍能保持穩定。然而,當引入具有推電子性質的酚,δ-蒎烯雙醇可進行1,6-消去反應,應而降低硼酯的穩定性。綜合上述,我們可藉由觸發在δ-蒎烯雙醇上形成不穩定的酚,來對硼酸進行可控釋放。最終,我們將光可控侷限保護基應用於抗癌藥物伊沙佐米的前驅藥策略中。在經由365 nm光解後,此光籠化抑制劑可順利釋放伊沙佐米並抑制蛋白酶體活性。未來此策略將可進一步應用於硼酸在生物系統中的可控釋放。
zh_TW
dc.description.abstractIn recent years, the application of boronic acids in biomedical fields and chemical biology has received increasing attention. For biomedical, boron is an important reagent for radiotherapy in cancer. In addition, the FDA has approved five boronic acid-containing drugs to date. In chemical biology, boronic acids can be applied to saccharide sensors, bioorthogonal probes, and drug delivery nanoparticles. However, it should be noted that boronic acids may also non-specifically bind with other nucleophiles in the biological system, limiting their application in the body.
In this study, we developed a controllable caging strategy for boronic acids using δ-pinanediol derivatives, allowing for the release of boronic acids under specific conditions to increase their specificity for biological targets. To achieve controllable release, we introduced trigger units, namely 4-[(2-nitrophenyl)methoxy]phenyl and 4-[(4-nitrophenyl)methoxy]phenyl, on the δ-pinanediol. Upon triggering, each of these trigger units can form a free phenol group, which destabilize the boronic ester, thereby releasing boronic acid molecules. Furthermore, we investigated the effects of pH value and substituents on the stability of boronic esters formed by δ-pinanediol derivatives. The results showed that the introducing of a bulky phenyl moiety in δ-pinanediol derivatives is crucial for the hydrolytic resistance of the boronic esters, which can remain stable in a wide range of pH values. However, with an electron-donating phenol group, δ-pinanediol can undergo 1,6-elimination, thereby reducing the stability of boronic esters. In short, we can control the release of boronic acids by triggering, through an unstable phenol on δ-pinanediol derivatives. Finally, we applied the controllable photocage strategy to prepare the prodrug of anti-cancer drug Ixazomib. After 365 nm irradiation, the photocaged prodrug can successfully release Ixazomib, thereby inhibiting proteasomal activity. In the future, our strategy can be further applied to the controllable release of boronic acids in biological systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:36:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:36:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
List of Figures viii
Abbreviation Table xv
Chapter 1 Introduction 1
1.1 Introduction to boronic acid in biological applications 1
1.2 Boronic acid containing drugs 3
1.3 Biological applications of boronic acids for saccharide sensors and bioorthogonal probes 5
1.4 Boronic acids for drug delivery 9
1.5 Stability of boronic esters 11
1.6 Boronic esters with pH responsive application in biological system 15
1.7 o-Nitrobenzyl group as a photo trigger unit in biological systems 17
1.8 p-Nitrobenzyl group as NTR trigger unit in biological systems 20
Chapter 2 Results and discussion 22
2.1 Molecular design 22
2.2 Synthesis of pinanediol-capped models 24
2.3 Evaluation of the hydrolytic resistance of pinanediol-capped models 25
2.4 Synthesis of pinanediol photocages 28
2.5 The hydrolytic resistance of boronic esters containing δ-pinanediol photocages 31
2.6 The hydrolytic stability of boronic esters containing δ-pinanediol photocages under different pH values 39
2.7 Synthesis of δ-pinanediol derivatives by substituent effect 45
2.8 The hydrolytic stability of boronic esters containing pinanediol derivatives by substituent effect 47
2.9 δ-Pinanediol photocage can be used in boronic acid prodrug strategy 55
2.10 δ-Pinanediol photocage enables controllable proteasome inhibition 67
Chapter 3 Conclusion 70
Chapter 4 Methods 71
4.1 General Methods and Instrument 71
4.1.1 Hydrolytic resistance determination 72
4.1.2 Reassembly assay 74
4.1.3 The hydrolytic stability determination of boronic esters containing δ-pinanediol photocages under different pH values 77
4.1.4 The stability determination of boronic esters containing pinanediol derivatives by substituent effect 79
4.1.5 δ-Pinanediol photocage applied in boronic acid prodrug strategy 80
4.1.6 20S proteasomal enzyme inhibition assay 81
4.2 Synthesis and Characterization of Compound 82
4.2.1 Synthesis of pinene capping models 82
4.2.2 Synthesis of pinene with photo trigger capping models 89
4.2.3 Synthesis of pinene with substituent effect capping models 102
4.2.4 Synthesis of pinene with hypoxia trigger capping models 108
References 113
Appendix 123
-
dc.language.isoen-
dc.subject蒎烯雙醇zh_TW
dc.subject硼酸zh_TW
dc.subject硼酯zh_TW
dc.subject可控侷限基團zh_TW
dc.subjectboronic acidsen
dc.subjectboronic estersen
dc.subjectcontrollable cagingen
dc.subjectpinanediolen
dc.title開發蒎烯雙醇衍生物對硼酸的可控籠閉策略zh_TW
dc.titleDeveloping Controllable Caging Strategies of Boronic Acids by Pinanediol Derivativesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝俊結;李賢明zh_TW
dc.contributor.oralexamcommitteeJiun-Jie Shie;Hsien-Ming Leeen
dc.subject.keyword硼酸,硼酯,蒎烯雙醇,可控侷限基團,zh_TW
dc.subject.keywordboronic acids,boronic esters,pinanediol,controllable caging,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU202302769-
dc.rights.note未授權-
dc.date.accepted2023-08-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
11.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved