請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90551
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊啓伸 | zh_TW |
dc.contributor.advisor | Chii-Shen Yang | en |
dc.contributor.author | 柯達 | zh_TW |
dc.contributor.author | Ta Ko | en |
dc.date.accessioned | 2023-10-03T16:35:46Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-01 | - |
dc.identifier.citation | 1. O.P. Ernst, D.T. Lodowski, et al., Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev, 2014. 114(1): p. 126-163.
2. E.G. Govorunova, O.A. Sineshchekov, et al., Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem, 2017. 86: p. 845-872. 3. R.H. Lozier, R.A. Bogomolni, et al., Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J, 1975. 15(9): p. 955-962. 4. J.K. Lanyi, Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophys Chem, 1986. 15: p. 11-28. 5. I. Gushchin, V. Shevchenko, et al., Crystal structure of a light-driven sodium pump. Nat Struct Mol Biol, 2015. 22(5): p. 390-395. 6. K. Deisseroth and P. Hegemann, The form and function of channelrhodopsin. Science, 2017. 357(6356). 7. J.L. Spudich and R.A. Bogomolni, Sensory rhodopsin I: receptor activation and signal relay. J Bioenerg Biomembr, 1992. 24(2): p. 193-200. 8. J.L. Spudich and H. Luecke, Sensory rhodopsin II: functional insights from structure. Curr Opin Struct Biol, 2002. 12(4): p. 540-546. 9. L.B. Lamarche, R.P. Kumar, et al., Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate Salpingoeca rosetta. Biochemistry, 2017. 56(43): p. 5812-5822. 10. S.Y. Kim, S.R. Yoon, et al., A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol Microbiol, 2014. 93(3): p. 403-414. 11. J.L. Chen, Y.C. Lin, et al., The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep, 2019. 9(1): p. 5672. 12. L.N. Ko, G.Z. Lim, et al., HwMR is a novel magnesium-associated protein. Biophys J, 2022. 121(14): p. 2781-2793. 13. A. Matsuno-Yagi and Y. Mukohata, ATP synthesis linked to light-dependent proton uptake in a rad mutant strain of Halobacterium lacking bacteriorhodopsin. Arch Biochem Biophys, 1980. 199(1): p. 297-303. 14. B. Schobert and J.K. Lanyi, Halorhodopsin is a light-driven chloride pump. J Biol Chem, 1982. 257(17): p. 10306-10313. 15. A. Seki, S. Miyauchi, et al., Heterologous expression of Pharaonis halorhodopsin in Xenopus laevis oocytes and electrophysiological characterization of its light-driven Cl- pump activity. Biophys J, 2007. 92(7): p. 2559-2569. 16. U. Alexiev and D.L. Farrens, Fluorescence spectroscopy of rhodopsins: insights and approaches. Biochim Biophys Acta, 2014. 1837(5): p. 694-709. 17. W. Wang, Z. Nossoni, et al., Tuning the electronic absorption of protein-embedded all-trans-retinal. Science, 2012. 338(6112): p. 1340-1343. 18. R. Pal, S. Sekharan, et al., Spectral tuning in halorhodopsin: the chloride pump photoreceptor. J Am Chem Soc, 2013. 135(26): p. 9624-9627. 19. H. Feroz, B. Ferlez, et al., Light-Driven Chloride Transport Kinetics of Halorhodopsin. Biophys J, 2018. 115(2): p. 353-360. 20. M. Mizuno, A. Nakajima, et al., Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis. J Phys Chem A, 2018. 122(9): p. 2411-2423. 21. A. Duschl, J.K. Lanyi, et al., Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J Biol Chem, 1990. 265(3): p. 1261-1267. 22. X.R. Chen, Y.C. Huang, et al., A Unique Light-Driven Proton Transportation Signal in Halorhodopsin from Natronomonas pharaonis. Biophys J, 2016. 111(12): p. 2600-2607. 23. E.S. Boyden, F. Zhang, et al., Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 2005. 8(9): p. 1263-1268. 24. X. Han and E.S. Boyden, Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One, 2007. 2(3): p. e299. 25. A.M. Stamatakis and G.D. Stuber, Optogenetic strategies to dissect the neural circuits that underlie reward and addiction. Cold Spring Harb Perspect Med, 2012. 2(11). 26. M.K. Pan, Y.S. Li, et al., Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med, 2020. 12(526). 27. T. Bruegmann, T. van Bremen, et al., Optogenetic control of contractile function in skeletal muscle. Nat Commun, 2015. 6: p. 7153. 28. E. Entcheva and M.W. Kay, Cardiac optogenetics: a decade of enlightenment. Nat Rev Cardiol, 2021. 18(5): p. 349-367. 29. S. Zhao, C. Cunha, et al., Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol, 2008. 36(1-4): p. 141-154. 30. V. Gradinaru, K.R. Thompson, et al., eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol, 2008. 36(1-4): p. 129-139. 31. V. Gradinaru, F. Zhang, et al., Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 2010. 141(1): p. 154-165. 32. G.S. Soliman and H.G. Trüper, Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie, 1982. 3(2): p. 318-329. 33. M. Falb, F. Pfeiffer, et al., Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res, 2005. 15(10): p. 1336-1343. 34. A.E. Walsby, A square bacterium. Nature, 1980. 283(5742): p. 69-71. 35. H. Bolhuis, E.M. Poele, et al., Isolation and cultivation of Walsby's square archaeon. Environ Microbiol, 2004. 6(12): p. 1287-1291. 36. H. Bolhuis, P. Palm, et al., The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity. BMC Genomics, 2006. 7(1): p. 169. 37. W.V. Ng, S.P. Kennedy, et al., Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A, 2000. 97(22): p. 12176-12181. 38. N.S. Baliga, R. Bonneau, et al., Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res, 2004. 14(11): p. 2221-2234. 39. P.C. Chen, T.W. Chen, et al., Complete Genome Sequence of a New Halophilic Archaeon, Haloarcula taiwanensis, Isolated from a Solar Saltern in Southern Taiwan. Genome Announc, 2018. 6(5). 40. R. Sánchez-Nieves, M. Facciotti, et al., Draft genome of Haloarcula rubripromontorii strain SL3, a novel halophilic archaeon isolated from the solar salterns of Cabo Rojo, Puerto Rico. Genom Data, 2016. 7: p. 287-289. 41. H.Y. Fu, H.P. Yi, et al., Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Mol Microbiol, 2013. 88(3): p. 551-561. 42. H.Y. Fu, Y.N. Chang, et al., Ser(262) determines the chloride-dependent colour tuning of a new halorhodopsin from Haloquadratum walsbyi. Biosci Rep, 2012. 32(5): p. 501-509. 43. L.K. Chu, C.W. Yen, et al., Bacteriorhodopsin-based photo-electrochemical cell. Biosens Bioelectron, 2010. 26(2): p. 620-626. 44. M.F. Hsu, H.Y. Fu, et al., Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem, 2015. 290(49): p. 29567-29577. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90551 | - |
dc.description.abstract | 氯視紫質是類GPCR的膜蛋白質,目前被發現廣泛存在於嗜鹽古生菌中。氯視紫質具有七個穿膜螺旋及一個發光機團-視黃醛,在基態時視黃醛會傾向全反式結構,當受到特定波長的光激發後會進行異構化轉變為13-順式,藉由視黃醛的結構變化推動氯視紫質蛋白質的構型轉換,將氯離子主動運輸進入細胞內。因氯視紫質具有主動運輸氯離子進入細胞內的特性,氯視紫質被應用於光控生理學,用以降低細胞的膜電位,抑制神經細胞的活性。NpHR及HsHR這兩種氯視紫質在過去被研究的最透徹,由於NpHR擁有較高的表現量,因此最常被應用於光控生理學上。然而NpHR受光照後展現極快的氯離子運輸效率,導致氯離子快速在細胞內累積,這個現象造成劇烈的細胞膜電位變化以及細胞膜內外離子平衡失調最終導致細胞受損或死亡。因此本研究挑選六種嗜鹽古生菌的氯視紫質,NpHR、HwHR、HsHR、HmHR、HtHR與HrHR,分析在不同鹽度與酸鹼度下氯視紫質的結構穩定性、氯離子運輸效率、功能穩定性以及在神經細胞生理條件下氯離子運輸能力,藉由這些性質評估六種嗜鹽古生菌的氯視紫質應用在光控生理學的潛力。根據實驗結果發現NpHR對環境的變化最敏感,HsHR在神經細胞生理條件下擁有最慢的氯離子運輸效率,此外值得一提的是HwHR與HsHR在神經細胞生理條件下運輸氯離子的能力明顯降低。根據實驗結果,Haloarcula屬的三個氯視紫質HmHR、HtHR與HrHR在不同環境下擁有較好的結構穩定性、較NpHR稍慢的氯離子運輸速度、出色的功能穩定性以及在神經細胞的生理條件下可以維持氯離子運輸能力。因為這三個氯視紫質的氯離子運輸速度比NpHR慢,能減緩的氯離子在細胞內累積的速度,降低對細胞的壓力及損害,因此本研究認為Haloarcula屬的三個氯視紫質是可替代NpHR作為光控生理學工具的候選人。 | zh_TW |
dc.description.abstract | Halorhodopsins (HRs) are GPCR-like proteins that are widely found in haloarchaea. HR has seven transmembrane helices and a retinal chromophore, which tends to keep in all-trans configuration in the ground state. Upon stimulation by light of the specific wavelength, all-trans-retinal undergoes isomerization to 13-cis form, leading to conformational changes of HRs and actively transporting chloride ions into the cells. Because HRs can generate the influx of chloride ions, HRs have been applied in optogenetics to decrease the membrane potential of cells and to inhibit neural activity. Previously, two HRs, NpHR and HsHR, are the most well-studied HRs, but due to the high expression level of NpHR, which is the most frequently used HR in optogenetics. However, NpHR exhibits an extremely high chloride ion transport rate upon light illumination, causing the rapid accumulation of chloride ions in the cells. This phenomenon leads to severe changes in membrane potential and ion imbalance between the inside and the outside of the cell membrane, contributing to cell damage and death. Therefore, this study selected six HRs, NpHR, HwHR, HsHR, HmHR, HtHR, and HrHR, from six haloarchaea species and analyzed their structural stability, chloride ion transport rate, functional stability, and chloride transport capabilities under different salt concentrations and pH levels to comprehensively evaluate their potential for application in optogenetics. According to the experimental results, we found that NpHR was the most sensitive to environmental changes than others, because of the lower structural stability of NpHR in various environments. Then, HsHR has the longest tau value of the G-state under neural physiological conditions, which means HsHR may have the lowest chloride ion transport rate in neurons. Besides, it is noteworthy that the chloride ion transport capabilities of HwHR and HsHR were significantly reduced under neural physiological conditions. On the basis of the experimental results, three HRs from the genus Haloarcula, HmHR, HtHR, and HrHR, had better structural stabilities, slower chloride ion transport rate, and excellent functional stabilities under neural physiological conditions. Because the transport efficiencies of these three HRs were lower than that of NpHR, they can slow down the over-accumulation of chloride ions inside the cells, which reduces stress and damage to neurons. Therefore, three HRs from the genus Haloarcula are the candidates as alternative HR-based optogenetic tools. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:35:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:35:46Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii Table of content iv List of Figure vii List of Table ix List of Abbreviations and Acronyms xi Chapter 1: Introduction 1 1.1 Microbial rhodopsin (mRho) 1 1.2 Halorhodopsin (HR) 3 1.2.1 Characteristic absorption peak of HR 3 1.2.2 Photocycle of HR 5 1.2.3 Physiological function of HR 7 1.3 Optogenetics 8 1.3.1 Mechanism and applications of optogenetics 8 1.3.2 Limitations of optogenetics 10 1.4 Haloarchaea 12 1.4.1 Natronomonas pharaonis 12 1.4.2 Haloquadratum walsbyi 13 1.4.3 Halobacterium salinarum 14 1.4.4 Haloarcula marismortui 15 1.4.5 Haloarcula taiwanensis 16 1.4.6 Haloarcula rubripromontorii 17 1.5 The purpose of this study 19 Chapter 2: Materials and Methods 21 2.1 Materials 21 2.1.1 Chemical reagents 21 2.1.2 Bacteria strains 22 2.1.3 Plasmids 22 2.2 Equipment and Apparatus 23 2.2.1 Centrifugation 23 2.2.2 UV-Vis spectrum measurement system 23 2.2.3 Photocycle measurement system 23 2.2.4 Whole-cell photocurrent measurement system 24 2.2.5 Miscellaneous 24 2.3 Methods 25 2.3.1 Membrane protein expression and purification 25 2.3.2 Flash laser-induced photocycle measurement 27 2.2.3 Laser-driven whole-cell photocurrent measurement 28 Chapter 3: Results 29 3.1 Expression of HRs on E. coli 29 3.1.1 Color of E. coli pellets 29 3.2 Optical properties of HRs 30 3.2.1 UV-Vis spectrometry of HRs 30 3.3 Optical dynamics of HRs 33 3.3.1 Tau values of G-state 33 3.3.2 Formation of N- and O-state 36 3.4 Transport capabilities of chloride ions 39 3.4.1 Whole-cell photocurrent of HRs 39 3.5 Conclusions 43 Chapter 4: Discussions and Future Perspectives 45 4.1 Different chloride ion transport mechanisms of HRs 45 4.2 Intermediate state shift 47 4.3 Crystal structures of HRs 49 4.4 Future Perspectives 51 Chapter 5: Supplementary Data 52 References 58 | - |
dc.language.iso | en | - |
dc.title | 探討嗜鹽古生菌氯視紫質光控生理學之應用潛力: 研究在不同酸鹼度與鹽度下之光驅動特性 | zh_TW |
dc.title | Exploring the optogenetic potential of haloarchaeal halorhodopsins: a study of light-driven properties under varying pH and salt conditions | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳亘承;傅煦媛 | zh_TW |
dc.contributor.oralexamcommittee | Hsuan-Chen Wu;Hsu-Yuan Fu | en |
dc.subject.keyword | 氯視紫質,嗜鹽古生菌,光控生理學,氯離子運輸效率,Haloarcula, | zh_TW |
dc.subject.keyword | halorhodopsin,haloarchaea,optogenetics,chloride ion transport rate,Haloarcula, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU202302627 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-04 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
dc.date.embargo-lift | 2026-08-01 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 9.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。