Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志zh_TW
dc.contributor.advisorYing-Chih Liaoen
dc.contributor.author鄭德韵zh_TW
dc.contributor.authorDer-Yun Chengen
dc.date.accessioned2023-10-03T16:35:00Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-21-
dc.identifier.citation1. Lee, H., et al., 3D structure of lightweight, conductive cellulose nanofiber foam. Carbohydrate Polymers, 2021. 253: p. 117238.
2. Chen, Q., P.F. Cao, and R.C. Advincula, Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing. Advanced Functional Materials, 2018. 28(21): p. 1800631.
3. Choi, W.J., et al., Rapid development of dual porous poly (lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Materials Science and Engineering: C, 2020. 110: p. 110693.
4. Tang, F., et al., Preparation of porous materials with controlled pore size and porosity. Journal of the European Ceramic Society, 2004. 24(2): p. 341-344.
5. Katoh, K., T. Tanabe, and K. Yamauchi, Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials, 2004. 25(18): p. 4255-4262.
6. Takahashi, R., et al., High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. The Journal of Physical Chemistry B, 2000. 104(51): p. 12184-12191.
7. Xi, Z., et al., Experimental study on advantages of foam–sol in coal dust control. Process Safety and Environmental Protection, 2014. 92(6): p. 637-644.
8. Decký, M., et al., Foam concrete as new material in road constructions. Procedia engineering, 2016. 161: p. 428-433.
9. Chen, Z., et al., Lightweight and flexible graphene foam composites for high‐performance electromagnetic interference shielding. Advanced materials, 2013. 25(9): p. 1296-1300.
10. Yang, X.-h., P. He, and Y.-y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochemistry Communications, 2009. 11(6): p. 1127-1130.
11. Majeed, T., et al., A review on foam stabilizers for enhanced oil recovery. Energy & Fuels, 2021. 35(7): p. 5594-5612.
12. Zhou, D., et al., Enhancing the performance of foam concrete containing fly ash and steel slag via a pressure foaming process. Journal of Cleaner Production, 2021. 329: p. 129664.
13. Moreno, Y.S., G. Bournival, and S. Ata, Foam stability of flotation frothers under dynamic and static conditions. Separation and Purification Technology, 2021. 274: p. 117822.
14. Kulkarni, A.A. and J.B. Joshi, Bubble formation and bubble rise velocity in gas− liquid systems: a review. Industrial & engineering chemistry research, 2005. 44(16): p. 5873-5931.
15. Golemanov, K., et al., Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions. Physical Review E, 2008. 78(5): p. 051405.
16. Denkov, N., S. Tcholakova, and N. Politova-Brinkova, Physicochemical control of foam properties. Current Opinion in Colloid & Interface Science, 2020. 50: p. 101376.
17. Hughes, R. Formation of bubbles at simple orifices. 1955. Library of Congress.
18. Dani, S., et al., Homogeneous and reproducible mixing of highly viscous biomaterial inks and cell suspensions to create bioinks. Gels, 2021. 7(4): p. 227.
19. Yu, W., et al., Development of an Elongational‐Flow Microprocess for the Production of Size‐Controlled Nanoemulsions: Application to the Preparation of Monodispersed Polymer Nanoparticles and Composite Polymeric Microparticles. Macromolecular Reaction Engineering, 2017. 11(1): p. 1600025.
20. Nastasa, V., et al., Moderately stable emulsions produced by a double syringe method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 460: p. 321-326.
21. Gaillard, T., et al., Controlled foam generation using cyclic diphasic flows through a constriction. International Journal of Multiphase Flow, 2017. 96: p. 173-187.
22. McQuain, M.K., et al., Chaotic mixer improves microarray hybridization. Analytical biochemistry, 2004. 325(2): p. 215-226.
23. Wong, J.C., et al., Designing macroporous polymers from particle-stabilized foams. Journal of Materials Chemistry, 2010. 20(27): p. 5628-5640.
24. Sinha, V., et al., Rheology and hydraulics of polymer-based foams at elevated temperatures. Journal of Petroleum Science and Engineering, 2019. 180: p. 330-346.
25. Heller, J.P. and M.S. Kuntamukkula, Critical review of the foam rheology literature. Industrial & engineering chemistry research, 1987. 26(2): p. 318-325.
26. Denkov, N.D., et al., The role of surfactant type and bubble surface mobility in foam rheology. Soft Matter, 2009. 5(18): p. 3389-3408.
27. Kraynik, A.M. and M.G. Hansen, Foam rheology: a model of viscous phenomena. Journal of rheology, 1987. 31(2): p. 175-205.
28. Bashir, A., A.S. Haddad, and R. Rafati, An experimental investigation of dynamic viscosity of foam at different temperatures. Chemical Engineering Science, 2022. 248: p. 117262.
29. Ramadan, A., E. Kuru, and A. Saasen, Critcal Review of Drilling Foam Rheology.
30. Khan, S.A., C.A. Schnepper, and R.C. Armstrong, Foam rheology: III. Measurement of shear flow properties. Journal of Rheology, 1988. 32(1): p. 69-92.
31. Lexis, M. and N. Willenbacher, Yield stress and elasticity of aqueous foams from protein and surfactant solutions–The role of continuous phase viscosity and interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 459: p. 177-185.
32. Pu, W.-f., et al., Experimental investigation of viscoelastic polymers for stabilizing foam. Journal of industrial and engineering chemistry, 2017. 47: p. 360-367.
33. Gardiner, B., et al., Yield stress measurements of aqueous foams in the dry limit. Journal of rheology, 1998. 42(6): p. 1437-1450.
34. Wang, J., A.V. Nguyen, and S. Farrokhpay, A critical review of the growth, drainage and collapse of foams. Advances in colloid and interface science, 2016. 228: p. 55-70.
35. Kruglyakov, P.M., S.I. Elaneva, and N.G. Vilkova, About mechanism of foam stabilization by solid particles. Advances in Colloid and Interface Science, 2011. 165(2): p. 108-116.
36. Liu, X.N., et al., Foam stability in gas injection foaming process. Journal of Materials Science, 2010. 45(23): p. 6481-6493.
37. Fu, G., J. Jiang, and L. Ni, scale three-phase jet foam generator design and foaming condition optimization based on Box–Behnken design. Process Safety and Environmental Protection, 2020. 134: p. 217-225.
38. Sebastiani, D., et al., Classification of foam and foaming products for EPB mechanized tunnelling based on half-life time. Tunnelling and Underground Space Technology, 2019. 92: p. 103044.
39. Malcolm, A.S., A.F. Dexter, and A.P. Middelberg, Foaming properties of a peptide designed to form stimuli-responsive interfacial films. Soft Matter, 2006. 2(12): p. 1057-1066.
40. Binks, B.P., Particles as surfactants—similarities and differences. Current opinion in colloid & interface science, 2002. 7(1-2): p. 21-41.
41. Schulze-Schlarmann, J., N. Buchavzov, and C. Stubenrauch, A disjoining pressure study of foam films stabilized by tetradecyl trimethyl ammonium bromide C 14 TAB. Soft Matter, 2006. 2(7): p. 584-594.
42. Yu, K., et al., Foaming behavior of polymer-coated colloids: the need for thick liquid films. Langmuir, 2017. 33(26): p. 6528-6539.
43. Yu, K., et al., Critical role of nanocomposites at air–water interface: From aqueous foams to foam-based lightweight functional materials. Chemical Engineering Journal, 2021. 416: p. 129121.
44. Klitzing, R.v. and H.-J. Müller, Film stability control. Current opinion in colloid & interface science, 2002. 7(1-2): p. 42-49.
45. Binks, B.P. and R. Murakami, Phase inversion of particle-stabilized materials from foams to dry water. Nature materials, 2006. 5(11): p. 865-869.
46. Garbin, V., et al., Interactions and stress relaxation in monolayers of soft nanoparticles at fluid-fluid interfaces. Physical review letters, 2015. 114(10): p. 108301.
47. Yang, H., et al., Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS nano, 2018. 12(11): p. 11407-11416.
48. Invernizzi, M., et al., UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 2016. 9(7): p. 583.
49. Sangermano, M., N. Razza, and J.V. Crivello, Cationic UV‐curing: Technology and applications. Macromolecular Materials and Engineering, 2014. 299(7): p. 775-793.
50. Shukla, V., et al., Review of basic chemistry of UV‐curing technology. Pigment & Resin Technology, 2004.
51. Lesov, I., S. Tcholakova, and N. Denkov, Factors controlling the formation and stability of foams used as precursors of porous materials. Journal of colloid and interface science, 2014. 426: p. 9-21.
52. Jiang, T., et al., Exploration for decreasing the volume shrinkage for photopolymerization. Progress in Organic Coatings, 2012. 75(4): p. 398-403.
53. Kurdikar, D.L. and N.A. Peppas, The volume shrinkage, thermal and sorption behaviour of polydiacrylates. Polymer, 1995. 36(11): p. 2249-2255.
54. Topa-Skwarczyńska, M. and J. Ortyl, Photopolymerization shrinkage: strategies for reduction, measurement methods and future insights. Polymer Chemistry, 2023.
55. Stampfl, J., et al., Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. Journal of Micromechanics and Microengineering, 2008. 18(12): p. 125014.
56. Zhao, P., et al., Effect of organic fibers addition on digital light processing for Al2O3 porous ceramics. Ceramics International, 2021. 47(16): p. 23144-23152.
57. Hiroshima, H. and M. Komuro, Control of bubble defects in UV nanoimprint. Japanese journal of applied physics, 2007. 46(9S): p. 6391.
58. Wei, Y., Bubble and antibubble defects in 193i lithography. Bellingham, Washington, USA: SPIE, 2008.
59. Wu, H., et al., Study on bubble defects in roll-to-roll UV imprinting process for micropyramid arrays. I. Experiments. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2016. 34(2): p. 021201.
60. Ligon, S.C., et al., Strategies to reduce oxygen inhibition in photoinduced polymerization. Chemical reviews, 2014. 114(1): p. 557-589.
61. Takeishi, M. and G.Y. Tao, Photopolymerization of N‐vinylpyrrolidone accelerated by oxygen. Journal of Polymer Science Part C: Polymer Letters, 1989. 27(9): p. 301-305.
62. Koshiba, M., et al., Properties of ultra-violet curable polyurethane acrylates. Journal of Materials Science, 1982. 17(5): p. 1447-1458.
63. Nurulhuda, A., S. Izman, and N.H.A. Ngadiman, Fabrication PEGDA/ANFs biomaterial as 3D tissue engineering scaffold by DLP 3D printing tecshnology.
64. Aguirre-Soto, A., et al., On the role of N-vinylpyrrolidone in the aqueous radical-initiated copolymerization with PEGDA mediated by eosin Y in the presence of O 2. Polymer Chemistry, 2019. 10(8): p. 926-937.
65. Hoyle, C.E. An overview of oxygen inhibition in photocuring. in Technical Conference Proceedings-UV & EB Technology Expo & Conference, Charlotte, NC, United States. 2004.
66. Huh, J., et al., Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication, 2021. 13(3): p. 034103.
67. Gibson, I., et al., Additive manufacturing technologies. Vol. 17. 2021: Springer.
68. Gebhardt, A., Understanding additive manufacturing. 2011.
69. Fishler, R., et al., Shear thinning effect on liquid foam distribution in heterogeneously constricted in vitro airway models. Journal of Biomechanics, 2022. 140: p. 111131.
70. Kim, S.-S., et al., Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(8): p. 1399-1409.
71. Kakumanu, V. and S.S. Sundarram, Dual pore network polymer foams for biomedical applications via combined solid state foaming and additive manufacturing. Materials Letters, 2018. 213: p. 366-369.
72. Tondi, G., et al., Tannin-based rigid foams: a survey of chemical and physical properties. Bioresource technology, 2009. 100(21): p. 5162-5169.
73. Liu, X.N., et al., Foam stability in gas injection foaming process. Journal of Materials Science, 2010. 45: p. 6481-6493.
74. Rastogi, P., C.H. Venner, and C.W. Visser, Deposition Offset of Printed Foam Strands in Direct Bubble Writing. Polymers, 2022. 14(14): p. 2895.
75. Wilt, J.K., et al., Direct ink writing techniques for in situ gelation and solidification. MRS Communications, 2021. 11: p. 106-121.
76. Khan, S.A. and I. Lazoglu, Development of additively manufacturable and electrically conductive graphite–polymer composites. Progress in Additive Manufacturing, 2020. 5(2): p. 153-162.
77. Kim, G.B., et al., Three-dimensional printing: basic principles and applications in medicine and radiology. Korean journal of radiology, 2016. 17(2): p. 182-197.
78. Hosseinabadi, H.G., et al., Ink material selection and optical design considerations in DLP 3D printing. Applied Materials Today, 2023. 30: p. 101721.
79. Liu, Z., et al., Acoustophoretic Liquefaction for 3D Printing Ultrahigh‐Viscosity Nanoparticle Suspensions. Advanced Materials, 2022. 34(7): p. 2106183.
80. Zakeri, S., M. Vippola, and E. Levänen, A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Additive Manufacturing, 2020. 35: p. 101177.
81. Li, Y., et al., High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Additive Manufacturing, 2019. 30: p. 100889.
82. Katritsis, D., et al., Wall shear stress: theoretical considerations and methods of measurement. Progress in cardiovascular diseases, 2007. 49(5): p. 307-329.
83. Ms, D.P. and H.R. Mr, A pore-scale study on improving CTAB foam stability in heavy crude oil− water system using TiO2 nanoparticles. Journal of Petroleum Science and Engineering, 2019. 183: p. 106411.
84. Shah, S.K. and A. Bhattarai, Interfacial and micellization behavior of cetyltrimethylammonium bromide (CTAB) in water and methanol-water mixture at 298.15 to 323.15 K. Journal of Chemistry, 2020. 2020.
85. Hu, N., et al., Foams stabilization by silica nanoparticle with cationic and anionic surfactants in column flotation: Effects of particle size. Journal of the Taiwan Institute of Chemical Engineers, 2018. 88: p. 62-69.
86. Chang, C.-W., et al., PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter, 2010. 6(20): p. 5157-5164.
87. Chen, X., et al., Supramolecular hydrogels cross-linked by preassembled host–guest PEG cross-linkers resist excessive, ultrafast, and non-resting cyclic compression. NPG Asia Materials, 2018. 10(8): p. 788-799.
88. Bryant, S.J., et al., Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research, 2004. 22(5): p. 1143-1149.
89. Shi, X., et al., Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Matter, 2013. 9(42): p. 10129-10134.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90548-
dc.description.abstract在現代的社會中,泡沫構造的材料越來越常被作為填料使用,使在同一體積下,耗材較少且質量較輕,又由於其孔洞的構造,可以作為隔熱、保冷,抑或是抗噪的材料。如此特殊的性質卻因為其複雜的構造,難以精確製造出所要的形狀、孔隙度及機械強度,為了讓泡沫構造得以更加被廣泛應用,我們發展出了一套能夠3D列印、快速成型並且可以輕易控制的泡沫構造製程方法。
在此研究中,引進了DLP技術以快速將稍縱即逝的泡沫光固化形成我們所要的構造。添加光敏感的單體(PEGDA)、起始劑(TPO)以及交聯劑(TiO2)使容易能夠在UV光的照射下進行反應,於泡沫之間的薄膜交聯固化成型。為了讓調製的墨水能夠有效起泡,我們將水與界面活性劑(CTAB)均勻混合,降低表面張力並使溶液中的顆粒均勻懸浮,另外再添加奈米顆粒(SiO2)使泡沫更加穩定。將上述溶液配製完成後,使用設計改良後的裝置讓溶液與空氣混合形成穩定均一的泡沫構造,其孔隙大小、孔隙度可經由裝置中海綿的孔洞大小、流體的流速、裝置循環次數以及調整氣液比例來控制。由於溶液中顆粒與氣泡會對UV光固化反應造成阻礙,必須加入加速劑(NVP)來降低氧氣對自由基聚合反應的抑制並加速光固化程序,顆粒與氣泡造成的散射與反射能夠透過UV吸收劑的添加幫助提升列印的品質,而光固化造成嚴重的體積收縮則能夠藉由添加網絡中的填充物(PEG)作支撐使泡沫構造不致崩塌。3D列印(DLP)的製程方法使簡單或繁雜構造都能夠輕易地製作出來,泡沫孔洞大小於30µm以下,列印時的精細度小於200µm,器具能夠輕量化的同時(密度低於0.35 g/cm3),緻密的固化泡沫在經過固化之後提供一定程度的支撐力(壓縮強度大於400 kPa)及彈性(彈性模數為5.93 kPa)。這項技術最大的優點在於能夠直接印製出所需的器具形狀,不須經過切割、拼裝等等後處理來獲取所需產品,減少了原料的使用與浪費,在擁有相近成效的情況下,將原料、時間成本減至最低。
zh_TW
dc.description.abstractIn modern society, foam-based materials are increasingly being used as fillers due to their ability to reduce material consumption and weight while providing thermal insulation, cooling, noise reduction, and other benefits. However, the complex structure of foam makes it difficult to manufacture precisely, with the desired shape, porosity, and mechanical strength. To enable wider applications of foam structures, we have developed a 3D printing process that allows for rapid manufacturing and easy control of foam structures.
In this study, we introduced direct light processing (DLP) technology to quickly solidify fleeting foam into the desired structure. We added photosensitive monomers (PEGDA), initiators (TPO), and crosslinking agents (TiO2) to enable reaction under UV light, which crosslinked and solidified the thin films between the foam. To effectively foam the ink, we mixed water and a surfactant (CTAB) to reduce surface tension and uniformly suspend particles in the solution, and added nanoparticles (SiO2) to stabilize the foam. After preparing the ink solution, we used a modified device to mix the solution with air to form stable and small-pored foam structures. The pore size and porosity of the resulting product can be controlled by adjusting the pore size of the sponge in the device, the fluid flow rate, the number of cycles, and the gas-liquid ratio. Since the particles and bubbles in the solution obstruct the radical polymerization, an accelerator (NVP) was added to reduce the oxygen inhibition and maintain the rapid UV curing process. An addition of a UV absorber assists in increasing the printing quality restricted by the scattering and reflection of particles. The serious volume shrinkage caused by UV curing was supported by adding fillers (PEG) in the network to prevent the foam structure from collapsing. The 3D printing (DLP) process allows for easy manufacturing of simple or complex structures, with foam pore sizes below 30 μm and printing precision below 200 μm. The lightweight and dense solidified foam (density lower than 0.35 g/cm3) provides a certain degree of support (above 400 kPa) and elasticity (the elasticity modulus is at 5.93 kPa). The biggest advantage of this technology is that it can directly print the desired tool shape, eliminating the need for cutting, assembly, and other post-processing steps to obtain the desired product. This reduces material usage and waste while minimizing material and time costs, achieving similar results.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:35:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:35:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xiv
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 2
第2章 文獻回顧 3
2.1 輕量化構造 3
2.2 泡沫的形成 4
2.2.1 泡沫的性質 10
2.2.2 界面活性劑與奈米顆粒 14
2.3 UV光固化 16
2.3.1 光固化造成的收縮 18
2.3.2 溶液中顆粒與氣泡的影響 19
2.4 3D列印技術 23
2.4.1 溶液的可印製性 (printability) 23
2.4.2 孔洞材料的3D列印 24
2.4.3 泡沫的3D列印 27
第3章 實驗系統程序 32
3.1 實驗藥品與儀器介紹 32
3.1.1 實驗藥品 32
3.1.2 實驗儀器 32
3.2 實驗流程 33
3.2.1 可起泡之光固化墨水製備 33
3.2.2 起泡裝置之操作 34
3.2.3 泡沫穩定性之測試 34
3.2.4 泡沫流變性質鑑定 35
3.2.5 樣品的穿透深度(Dp)以及臨界能量(Ec) 35
3.2.6 DLP機台控制 35
3.2.7 樣品收縮率測試 36
3.2.8 3D列印泡沫步驟 36
3.2.9 泡泡尺寸分析 36
3.2.10 固化後樣品之面積分析 37
3.2.11 泡沫固化之機械性質測試 38
第4章 結果與討論 39
4.1 起泡裝置的設計 39
4.1.1 起泡機制 39
4.1.2 裝置中海綿孔隙大小對泡泡大小之影響 40
4.1.3 流體流速對泡泡大小之影響 41
4.1.4 程序循環次數對泡泡大小之影響 43
4.1.5 泡沫的性質分析 44
4.2 光固化材料之製備 48
4.2.1 光固化反應機制 48
4.2.2 水凝膠網絡支撐材之使用 49
4.2.3 加速劑之使用 52
4.2.4 界面活性劑與奈米顆粒的作用 54
4.2.5 UV光吸收劑之使用 59
4.3 3D列印可光固化的泡沫構造 61
4.3.1 DLP列印程序 61
4.3.2 DLP光固化3D列印機台的參數控制 62
4.3.3 固化後之泡沫構造 64
4.3.4 機械性質分析 66
4.3.5 輕量化材料之應用 68
第5章 結論與未來展望 71
參考文獻 72
-
dc.language.isozh_TW-
dc.title3D列印輕量化結構的可光固化泡沫製程技術zh_TW
dc.titlePhotocurable Foam Preparation for 3D-Printed Lightweight Structuresen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張鑑祥;何明樺;杜安邦zh_TW
dc.contributor.oralexamcommitteeChien-Hsiang Chang;Ming-Hua Ho;An-Pang Tuen
dc.subject.keyword泡沫,孔洞構造,3D列印,UV光固化,輕量化構造,zh_TW
dc.subject.keywordFoam,Porous structures,3D printing,UV curing,Lightweight structures,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202301824-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2028-07-20-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-07-20
5.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved