Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90547
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳賢燁zh_TW
dc.contributor.advisorHsien-Yeh Chenen
dc.contributor.author陳諭萱zh_TW
dc.contributor.authorYu-Hsuan Chenen
dc.date.accessioned2023-10-03T16:34:41Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-06-28-
dc.identifier.citation1. Kim, B.J. and E. Meng, Micromachining of Parylene C for bioMEMS. Polymers for Advanced Technologies, 2016. 27(5): p. 564-576.
2. Moss, T. and A. Greiner, Functionalization of Poly (para‐xylylene) s—Opportunities and Challenges as Coating Material. Advanced Materials Interfaces, 2020. 7(11): p. 1901858.
3. Chen, H.Y., C.T. Su, and M.Y. Tsai, Nanoscale Functional Polymer Coatings for Biointerface Engineering. Advanced Hierarchical Nanostructured Materials, 2014: p. 461-478.
4. Szwarc, M., Some remarks on the CH 2 [graphic omitted] CH 2 molecule. Discussions of the Faraday Society, 1947. 2: p. 46-49.
5. Errede, L. and M. Szwarc, Chemistry of p-xylylene, its analogues, and polymers. Quarterly Reviews, Chemical Society, 1958. 12(4): p. 301-320.
6. Senkevich, J.J. and S.B. Desu, Morphology of poly (chloro-p-xylylene) CVD thin films. Polymer, 1999. 40(21): p. 5751-5759.
7. Fortin, J.B. and T.-M. Lu, A model for the chemical vapor deposition of poly (para-xylylene)(parylene) thin films. Chemistry of materials, 2002. 14(5): p. 1945-1949.
8. Gorham, W.F., A new, general synthetic method for the preparation of linear poly‐p‐xylylenes. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1966. 4(12): p. 3027-3039.
9. Tung, H.-Y., et al., Construction and control of 3D porous structure based on vapor deposition on sublimation solids. Applied Materials Today, 2017. 7: p. 77-81.
10. Wu, T.-Y., T.-H. Lin, and H.-Y. Chen, Controlling the asymmetry of densified and porous hybrid coatings based on vapor sublimation and deposition. Materials Today Advances, 2022. 16: p. 100292.
11. Kaczmarek, H., et al., Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surface Science, 2002. 507: p. 883-888.
12. Chan, C.-M., T.-M. Ko, and H. Hiraoka, Polymer surface modification by plasmas and photons. Surface science reports, 1996. 24(1-2): p. 1-54.
13. Morent, R., et al., Plasma surface modification of biodegradable polymers: a review. Plasma processes and polymers, 2011. 8(3): p. 171-190.
14. Ratner, B.D., Surface modification of polymers: chemical, biological and surface analytical challenges. Biosensors and bioelectronics, 1995. 10(9-10): p. 797-804.
15. Zhang, C., et al., Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation. Acta biomaterialia, 2011. 7(10): p. 3746-3756.
16. Sun, H.Y., et al., Thiol‐Reactive Parylenes as a Robust Coating for Biomedical Materials. Advanced Materials Interfaces, 2014. 1(6): p. 1400093.
17. Desmet, T., et al., Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules, 2009. 10(9): p. 2351-2378.
18. Song, J.S., et al., Improved biocompatibility of parylene‐C films prepared by chemical vapor deposition and the subsequent plasma treatment. Journal of applied polymer science, 2009. 112(6): p. 3677-3685.
19. Seong, J., et al., Effects of ion bombardment with reactive gas environment on adhesion of Au films to Parylene C film. Thin Solid Films, 2005. 476(2): p. 386-390.
20. Trantidou, T., T. Prodromakis, and C. Toumazou, Oxygen plasma induced hydrophilicity of Parylene-C thin films. Applied surface science, 2012. 261: p. 43-51.
21. Kontziampasis, D., et al., Effects of Ar and O2 plasma etching on parylene C: topography versus surface chemistry and the impact on cell viability. Plasma Processes and Polymers, 2016. 13(3): p. 324-333.
22. Hsu, J.-M., et al., Encapsulation of an integrated neural interface device with Parylene C. IEEE Transactions on Biomedical Engineering, 2008. 56(1): p. 23-29.
23. Yeh, J. and K. Grebe, Patterning of poly‐para‐xylylenes by reactive ion etching. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1983. 1(2): p. 604-608.
24. Lee, S. and J. Vörös, An aqueous-based surface modification of poly (dimethylsiloxane) with poly (ethylene glycol) to prevent biofouling. Langmuir, 2005. 21(25): p. 11957-11962.
25. Zhang, H. and M. Chiao, Anti-fouling coatings of poly (dimethylsiloxane) devices for biological and biomedical applications. Journal of medical and biological engineering, 2015. 35: p. 143-155.
26. Chu, P.K., et al., Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 2002. 36(5-6): p. 143-206.
27. Hsissou, R., et al., Polymer composite materials: A comprehensive review. Composite structures, 2021. 262: p. 113640.
28. Liu, P. and G. Chen, Chapter Nine-Characterization Methods: Basic Factors. Porous Materials, 2014: p. 411-492.
29. Park, B.H., et al., Preparation and characterization of porous composite filter medium by polytetrafluoroethylene foam coating. Journal of the Air & Waste Management Association, 2010. 60(2): p. 137-141.
30. Rahman, M.A., et al., Optimising the design of Fe0-based filtration systems for water treatment: The suitability of porous iron composites. 2013.
31. Xie, Z., et al., An overview of the recent development in composite catalysts from porous materials for various reactions and processes. International journal of molecular sciences, 2010. 11(5): p. 2152-2187.
32. Zhai, Y., et al., Carbon materials for chemical capacitive energy storage. Advanced materials, 2011. 23(42): p. 4828-4850.
33. Boccaccini, A.R. and J.J. Blaker, Bioactive composite materials for tissue engineering scaffolds. Expert review of medical devices, 2005. 2(3): p. 303-317.
34. Zhang, R. and P.X. Ma, Poly (α‐hydroxyl acids)/hydroxyapatite porous composites for bone tissue engineering. I. Preparation and morphology. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 1999. 44(4): p. 446-455.
35. Yang, Y.-C., et al., Synergistic and regulatable bioremediation capsules fabrication based on vapor-phased encapsulation of bacillus bacteria and its regulator by poly-p-Xylylene. Polymers, 2020. 13(1): p. 41.
36. Wu, C.-Y., et al., Vapor-phased fabrication and modulation of cell-laden scaffolding materials. Nature Communications, 2021. 12(1): p. 3413.
37. Ma, J., I. Karaman, and R.D. Noebe, High temperature shape memory alloys. International Materials Reviews, 2010. 55(5): p. 257-315.
38. Ma, F., et al., Electric-field–induced assembly and propulsion of chiral colloidal clusters. Proceedings of the national academy of sciences, 2015. 112(20): p. 6307-6312.
39. Wakimoto, S., K. Suzumori, and K. Ogura, Miniature pneumatic curling rubber actuator generating bidirectional motion with one air-supply tube. Advanced Robotics, 2011. 25(9-10): p. 1311-1330.
40. Palacci, J., et al., Living crystals of light-activated colloidal surfers. Science, 2013. 339(6122): p. 936-940.
41. Ribeiro, T.P., et al., Magnetic Bone Tissue Engineering: Reviewing the Effects of Magnetic Stimulation on Bone Regeneration and Angiogenesis. Pharmaceutics, 2023. 15(4): p. 1045.
42. Zhang, Q.M. and M.J. Serpe, Stimuli‐Responsive Polymers for Actuation. ChemPhysChem, 2017. 18(11): p. 1451-1465.
43. Hu, L., et al., Stimuli-responsive polymers for sensing and actuation. Materials Horizons, 2019. 6(9): p. 1774-1793.
44. De Greef, A., P. Lambert, and A. Delchambre, Towards flexible medical instruments: Review of flexible fluidic actuators. Precision engineering, 2009. 33(4): p. 311-321.
45. El Feninat, F., et al., Shape memory materials for biomedical applications. Advanced Engineering Materials, 2002. 4(3): p. 91-104.
46. Huang, W., et al., Shape memory materials. Materials today, 2010. 13(7-8): p. 54-61.
47. Smela, E., Conjugated polymer actuators for biomedical applications. Advanced materials, 2003. 15(6): p. 481-494.
48. Kosidlo, U., et al., Nanocarbon based ionic actuators—a review. Smart Materials and Structures, 2013. 22(10): p. 104022.
49. Tadesse, Y., R.W. Grange, and S. Priya, Synthesis and cyclic force characterization of helical polypyrrole actuators for artificial facial muscles. Smart materials and structures, 2009. 18(8): p. 085008.
50. Baughman, R., Conducting polymer artificial muscles. Synthetic metals, 1996. 78(3): p. 339-353.
51. Uh, K., et al., An electrolyte-free conducting polymer actuator that displays electrothermal bending and flapping wing motions under a magnetic field. ACS Applied Materials & Interfaces, 2016. 8(2): p. 1289-1296.
52. Romasanta, L.J., M.A. López-Manchado, and R. Verdejo, Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Progress in Polymer Science, 2015. 51: p. 188-211.
53. Horak, F., et al., The effects of bilastine compared with cetirizine, fexofenadine, and placebo on allergen-induced nasal and ocular symptoms in patients exposed to aeroallergen in the Vienna Challenge Chamber. Inflammation research, 2010. 59: p. 391-398.
54. Sitti, M. and D.S. Wiersma, Pros and cons: Magnetic versus optical microrobots. Advanced Materials, 2020. 32(20): p. 1906766.
55. Thévenot, J., et al., Magnetic responsive polymer composite materials. Chemical Society Reviews, 2013. 42(17): p. 7099-7116.
56. Stuart, M.A.C., et al., Emerging applications of stimuli-responsive polymer materials. Nature materials, 2010. 9(2): p. 101-113.
57. Lu, L., P. Guo, and Y. Pan, Magnetic-field-assisted projection stereolithography for three-dimensional printing of smart structures. Journal of Manufacturing Science and Engineering, 2017. 139(7).
58. Mahdavi, M., et al., Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 2013. 18(7): p. 7533-7548.
59. Wu, C.-Y., et al., Vapor-based coatings for antibacterial and osteogenic functionalization and the immunological compatibility. Materials Science and Engineering: C, 2016. 69: p. 283-291.
60. Diller, E., et al., Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Applied Physics Letters, 2014. 104(17): p. 174101.
61. Hu, W., et al., Small-scale soft-bodied robot with multimodal locomotion. Nature, 2018. 554(7690): p. 81-85.
62. Lee, H., et al., 3D-printed programmable tensegrity for soft robotics. Science Robotics, 2020. 5(45): p. eaay9024.
63. Kim, Y., et al., Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018. 558(7709): p. 274-279.
64. Huang, H.-W., et al., Soft micromachines with programmable motility and morphology. Nature Communications, 2016. 7(1): p. 12263.
65. Kim, J., et al., Programming magnetic anisotropy in polymeric microactuators. Nature materials, 2011. 10(10): p. 747-752.
66. Li, L. and M. Aubertin, A general relationship between porosity and uniaxial strength of engineering materials. Canadian Journal of Civil Engineering, 2003. 30(4): p. 644-658.
67. Haynes, R., Effect of porosity content on the tensile strength of porous materials. Powder Metallurgy, 1971. 14(27): p. 64-70.
68. Kennedy, S., et al., Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials, 2018. 161: p. 179-189.
69. Zhao, X., et al., Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences, 2011. 108(1): p. 67-72.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90547-
dc.description.abstract聚對二甲苯以其眾多優點聞名。本研究在此介紹多樣性的聚對二甲苯型態。利用聚乙二醇在聚對二甲苯之薄膜上接合之方法,進行表面改質,提升其親水性。經由表面修飾後,聚對二甲苯薄膜將可能提升其生物相容性,及防止蛋白質在物質表面進貼附。此外,本文更進一步的將聚對二甲苯從傳統常見的二維薄膜型態轉化為三維的多孔塊材。並藉由調控傳送之氣體量多寡以及凍乾技術,構築出具有多層級架構的多孔複合材料。以此多層多孔的材料結構為基礎,添加氧化鐵,促使以聚對二甲苯為基底之執行元件可以被外界磁場所刺激,進而反映出特定的運動模式。這樣的技術,使聚對二甲苯的運用達到一個新的水平,同時也開啟了新的應用。zh_TW
dc.description.abstractPoly-para-xylylene is well-known for its numerous advantages. Here, we introduce the diverse form of poly-para-xylylene. PEG conjugation on the polymer is used to change the surface characteristics of the parylene film, improving the reaction for parylene C film and hydrophilic substance that may raise the biocompatibility and antifouling in vivo. We take parylene one step further and convert it from a two-dimensional configuration of dense films to a three-dimensional bulk, porous substance. Based on the quantity of entrance gases and freeze-drying mechanism, the hierarchy porous composite was developed. On this bubble porous construction, iron powder is added to cause the parylene-based actuator could stimulate by an external magnetic field, performing a specific action. The technique takes parylene to a new level and opens up an advanced application.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:34:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:34:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContent
摘要 I
Abstract II
Content III
List of Figures VI
Chapter 1 Introduction 1
1.1 Parylene 1
1.2 Surface modification films 6
1.3 Porous composite 8
1.4 Stimuli-responsive materials 10
1.5 Magnetic actuators 13
Chapter 2 Experimental section 16
2.1 Analysis instruments and Characterizations 16
2.1.1 Atomic force microscopy (AFM) 16
2.1.2 Scanning electron microscopy (SEM) 16
2.1.3 3D profile laser microscope 16
2.1.4 Fourier transform infrared spectroscopy (IRRAS) 17
2.1.5 Contact angle goniometer 17
2.1.6 Residual Gas Analyzers (RGA) 17
2.1.7 Stress-strain test and Young’s modulus measurement 18
2.2 Film coatings and surface modification 19
2.2.1 Film coating 19
2.2.2 Conjugate with polyethylene glycol 19
2.3 Hierarchy porous structure construction 21
2.3.1 Ice bubble template formation 21
2.3.2 Fabrication via sublimation and deposition 21
2.4 Vapor phase fabrication of magnetic actuator 22
Chapter 3 Results and discussion 24
3.1 Surface modification of poly-para-xylylene films 24
3.2 Hierarchical porous structure 33
3.3 Magnetic Actuator Devices 41
Chapter 4 Conclusion 49
4.1 Conclusion 49
4.2 Future work 51
Reference 52
-
dc.language.isoen-
dc.subject聚對二甲苯zh_TW
dc.subject昇華zh_TW
dc.subject氣相沉積zh_TW
dc.subject多層級結構zh_TW
dc.subject磁力執行元件zh_TW
dc.subjectVapor depositionen
dc.subjectSublimationen
dc.subjectHierarchy structuresen
dc.subjectParyleneen
dc.subjectMagnetic actuatoren
dc.title基於氣相昇華與沉積製程建構聚對二甲苯為基底之執行元件zh_TW
dc.titleParylene-Based Actuator Devices via Sublimation and Deposition Polymerization Fabrication Processen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游佳欣;陳柏均zh_TW
dc.contributor.oralexamcommitteeJia-Shing Yu ;Po-Chun Chenen
dc.subject.keyword聚對二甲苯,氣相沉積,昇華,多層級結構,磁力執行元件,zh_TW
dc.subject.keywordParylene,Vapor deposition,Sublimation,Hierarchy structures,Magnetic actuator,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202301168-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-06-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-07-01-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved