請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90539
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏宏宇 | zh_TW |
dc.contributor.advisor | Hung-Yu Wei | en |
dc.contributor.author | 楊宇晨 | zh_TW |
dc.contributor.author | Yu-Chen Yang | en |
dc.date.accessioned | 2023-10-03T16:32:36Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | [1] Madwifi - wireless driver documentation. [online].http://madwifi-project.org/wiki/DevDocs/Branches.
[2] Poetry. Version 1.2.2, October 2022, https://python-poetry.org/. [3] User Datagram Protocol. RFC 768, Aug. 1980. [4] Transmission Control Protocol. RFC 793, Sept. 1981. [5] IEEE Standard for Information technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standards Association, March 2012. [6] J. Bicket. Bit-rate selection in wireless networks. Master’s thesis, Massachusetts Institute of Technology, 2005. [7] Canonical. Ubuntu. Version 22.04, April 2022, https://ubuntu.com. [8] CHAdeMO. Technical Specifications of Quick Charger for Electric Vehicles, May 2018. [9] D. S. E. Deering and B. Hinden. Internet Protocol, Version 6 (IPv6) Specification.RFC 8200, July 2017. [10] ESnet and Lawrence Berkeley National Laboratory. iPerf - The ultimate speed test tool for TCP, UDP and SCTP. [11] EXIficient team. EXIficient. https://exificient.github.io/. [12] D. GroBmann. Iso 15118 - the future of charging. emobility tec, issue, 4, 2021. [13] G. Holland, N. Vaidya, and P. Bahl. A rate-adaptive mac protocol for multi-hop wireless networks. In Proceedings of the 7th annual international conference on Mobile computing and networking, MobiCom ’01, pages 236–251, New York, NY, USA, 2001. ACM. [14] T. Huehn. A Measurement-Based Joint Power and Rate Controller for IEEE 802.11 Networks. Phd thesis, TECHNISCHE UNIVERSITAT¨ BERLIN, 2013. [15] International Organization for Standardization. ISO/IEC 10731: Information technology - Open Systems Interconnection - Basic Reference Model - Conventions for the definition of OSI services, December 1994. first edition. [16] International Organization for Standardization. Road Vehicles - Vehicle-to-Grid Communication Interface - Part 2: Network and application protocol requirements, April 2014. first edition. [17] International Organization for Standardization. Road Vehicles - Vehicle-to-Grid Communication Interface - Part 3: Physical and data link layer requirements, May 2015. first edition. [18] International Organization for Standardization. Road Vehicles - Vehicle-to-Grid Communication Interface - Part 8: Physical and data link layer requirements for wireless communication, September 2020. second edition. [19] International Organization for Standardization. Road Vehicles - Vehicle-to-Grid Communication Interface - Part 20: Network and application protocol requirements, March 2022. final draft international standard. [20] A. Kamerman and L. Monteban.“wavelan r-ii: a high-performance wireless lan for the unlicensed band ". Bell Labs Technical Journal, 2(3):118–133, 1997. [21] M. Lacage, M. Manshaei, and T. Turletti. Ieee 802.11 rate adaptation: A practical approach. in proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, 2004. [22] Z. Li, A. Das, A. Gupta, and S. Nandi. Full auto rate mac protocol for wireless ad hoc networks. Communications, IEE Proceedings-, 152(3):311–319, Jun 2005. [23] T. Mrugalski, M. Siodelski, B. Volz, A. Yourtchenko, M. Richardson, S. Jiang, T. Lemon, and T. Winters. Dynamic Host Configuration Protocol for IPv6 (DHCPv6). RFC 8415, Nov. 2018. [24] D. T. Narten, T. Jinmei, and D. S. Thomson. IPv6 Stateless Address Autoconfigu ration. RFC 4862, Sept. 2007. [25] OpenSSL Committee. OpenSSL Project. https://www.openssl.org. [26] G. Prateek. Implementation and experimental study of rate adaptation algorithms in ieee 802.11 wireless networks. Master’s thesis, Iowa State University, Ames, Iowa,2009. [27] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. Opportunistic media ac cess for multirate ad hoc networks. In Proceedings of the 8th annual international conference on Mobile computing and networking, MobiCom ’02, pages 24–35, NewYork, NY, USA, 2002. ACM. [28] SwitchEV. RISE-V2G 2.0, July 2022. https://github.com/SwitchEV/iso15118. [29] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer wireless bit rate adap tation. SIGCOMM Comput. Commun. Rev., 39(4):3–14, Aug 2009. [30] D. Xia, J. Hart, and Q. Fu. On the performance of rate control algorithm minstrel. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), pages 406–412, 2012. [31] D. Xia, J. Hart, and Q. Fu. Evaluation of the minstrel rate adaptation algorithm in ieee 802.11g wlans. In 2013 IEEE International Conference on Communications (ICC), pages 2223–2228, 2013. [32] W. Yin, P. Hu, and J. Indulska. Rate control in the mac80211 framework: Overview, evaluation and improvements. Computer Networks, 81:289–307, 2015. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90539 | - |
dc.description.abstract | 隨著電動汽車在全球普及,充電的問題也越來越受到重視。因此,衍生出了多種充電通訊標準,例如:CHAdeMO,ISO 15118 等其他充電通訊標準。其中,最新推出的 ISO 15118-20 標準相較於其他充電通訊標準新增了包括無缐充電(WPT),雙向充電 (BPT) 等新功能,提供給電動車用戶更豐富的充電場景。本研究中,實作了 ISO 15118-8 無線充電底層標準和部分 ISO 15118-20 充電上層標準。其中,ISO 15118-20標準中規定了每個通訊階段的超時時間。頻繁的超時行為會嚴重影響整個充電系統的效能。因此,爲了盡量減少充電系統在真實環境下發生超時導致通訊中斷,我們在實作的系統上對每一個通訊階段進行延遲量測。爲此,我們還設計了兩種現實中可能出現的情境:1) 多個用戶共享一個充電 AP ; 2) 用於充電的 AP 周圍有相同通道的干擾 AP。基於上述兩種情境,我們的實驗結果表明:在第一種情境下,隨著共存用戶數量的增加,通訊延遲也相應增加,如果共存用戶超過一定數量,則會導致超時頻繁發生。此外,我們還發現在共存用戶數相同時,5GHz 完成充電過程的總延遲顯著低於 2.4GHz 下的延遲。在第二種情境下,我們觀察到由於相同通道干擾 AP 的加入,導致通訊延遲增加和超時發生。爲了避免由於干擾 AP 導致的超時,我們設計了一種 802.11 速率調配演算法,并將該算法實作到 AP 中。經實驗證明,我們設計的演算法可以有效降低由於干擾AP導致的超時發生。 | zh_TW |
dc.description.abstract | With the increasing popularity of electric vehicles (EVs) worldwide, EV charging has become a matter of increasing concern. This has led to the emergence of various charging communication standards such as CHAdeMO, ISO 15118, among others. The latest ISO 15118-20 standard has introduced new features like wireless power transfer (WPT) and bidirectional power transfer (BPT), offering EV users a wider range of charging scenar ios compared to other standards. In this study, we implemented the lower layer standard of ISO 15118-8 wireless charging and part of the upper layer standard of ISO 15118-20 charging. The ISO 15118-20 standard outlines the timeout period for each communication phase. Frequent timeouts can severely impact the performance of the entire charging sys tem. Hence, to minimize communication interruptions caused by timeouts in real-world charging systems, we measured the latency for each communication stage in our implemented system. We designed two realistic scenarios: 1) multiple users sharing a charging access point (AP); and 2) interference from APs using the same channel around the AP designated for charging. Based on these scenarios, our experimental results demonstrate that in the first scenario, as the number of concurrent users increases, communication la tency correspondingly rises, and exceeding a certain threshold of users can lead to frequent timeouts. Moreover, we found that the total latency for completing the charging process is considerably lower in the 5GHz communication scenario than in the 2.4GHz scenario. In the second scenario, we observed that the addition of interfering APs on the same channel resulted in increased communication latency and timeouts. To mitigate timeouts caused by interfering APs, we developed an 802.11 rate adaptation algorithm and implemented it in the AP. The experimental results revealed that our designed algorithm can effectively reduce timeouts caused by interfering APs. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:32:36Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:32:36Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xv Denotation xvii Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 System Implementation 7 2.1 Upper Layers Implementation . . . . . . . . . . . . . . . . . . . . . 7 2.2 Lower Layers Implementation . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 WLAN frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Beacon period . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Association Support . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 3 Performance Observation 17 3.1 Testing Background . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Under different coexistent users . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2.1 Under 2.4GHz: . . . . . . . . . . . . . . . . . . . . . 24 3.2.2.2 Under 5GHz: . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Under different interference strengths . . . . . . . . . . . . . . . . . 29 3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.3 Timeout case analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 4 Algorithm Design 43 4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Flame Loss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.3 BER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Algorithm Improvement . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.1 Build firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.2 Design 1 - EWMA weight . . . . . . . . . . . . . . . . . . . . . . 49 4.2.3 Design 2 - First rate retry count . . . . . . . . . . . . . . . . . . . . 51 4.2.4 Design 3 - Multi-rate retry chain . . . . . . . . . . . . . . . . . . . 53 4.3 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 User-Specific Algorithm Allocation . . . . . . . . . . . . . . . . . . 55 Chapter 5 Conclusions 59 References 61 | - |
dc.language.iso | en | - |
dc.title | 設計用於可靠電動車充電通信系統的速率自適應方法 | zh_TW |
dc.title | Design of Rate Adaptation for Reliable EV Charging Communication System | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭瑞光;王志宇;黃琴雅 | zh_TW |
dc.contributor.oralexamcommittee | Ray-Guang Cheng;Chih-Yu Wang;Chin-Ya Huang | en |
dc.subject.keyword | ISO 15118,無綫通訊,WiFi,速率調配演算法, | zh_TW |
dc.subject.keyword | ISO 15118,Wireless Communication,WiFi,Rate Adaptation Algorithm, | en |
dc.relation.page | 64 | - |
dc.identifier.doi | 10.6342/NTU202302021 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 15.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。