請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90534完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧南佑 | zh_TW |
| dc.contributor.advisor | Nan-You Lu | en |
| dc.contributor.author | 柯旻佑 | zh_TW |
| dc.contributor.author | Min-You Ko | en |
| dc.date.accessioned | 2023-10-03T16:31:18Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] Joyce, L., et al. (2022). "Global Wind Report 2022." Global Wind Energy Council.
[2] International Energy Agency. (2021). "Global Energy Review 2021." IEA. [3] 4C Offshore. "Global Offshore Wind Speeds Rankings." Retrieved 1 July, 2023, from https://www.4coffshore.com. [4] Chinese National Standards (2018). "Wind turbines-Part1: Design requirements." CNS 15176-1. [5] Georgiou, P., et al. (1983). "Design wind speeds in regions dominated by tropical cyclones." Journal of Wind Engineering and Industrial Aerodynamics 13(1-3): 139-152. [6] Holland, G. J. (1980). "An analytic model of the wind and pressure profiles in hurricanes." Monthly Weather Review: 1212-1218. [7] Skamarock, W. C., et al. (2019). "A description of the advanced research WRF model version 4." National Center for Atmospheric Research: Boulder, CO, USA 145(145): 550. [8] Grell, G. A., et al. (1994). "A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)." University Corporation for Atmospheric Research. [9] Horvath, K., et al. (2012). "Sub‐kilometer dynamical downscaling of near‐surface winds in complex terrain using WRF and MM5 mesoscale models." Journal of Geophysical Research: Atmospheres 117(D11). [10] Powers, J. G., et al. (2017). "The weather research and forecasting model: Overview, system efforts, and future directions." Bulletin of the American Meteorological Society 98(8): 1717-1737. [11] Islam, T., et al. (2015). "Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics." Natural Hazards 76: 1473-1495. [12] Wu, Z., et al. (2019). "Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions." Acta Oceanologica Sinica 38: 74-83. [13] Carvalho, D., et al. (2014). "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal." Applied Energy 117: 116-126. [14] Huang, C. Y., et al. (2019). "Track deflection of typhoon Nesat (2017) as realized by multiresolution simulations of a global model." Monthly Weather Review 147(5): 1593-1613. [15] Liou, Y. A., et al. (2019). "Consecutive dual-vortex interactions between quadruple typhoons Noru, Kulap, Nesat and Haitang during the 2017 North Pacific typhoon season." Remote Sensing 11(16): 1843. [16] Hsiao, L. F., et al. (2020). "Improvement of the numerical tropical cyclone prediction system at the Central Weather Bureau of Taiwan: TWRF (Typhoon WRF)." Atmosphere 11(6): 657. [17] Wyngaard, J. C. (2004). "Toward numerical modeling in the “Terra Incognita”." Journal of the atmospheric sciences 61(14): 1816-1826. [18] Haupt, S. E., et al. (2019). "On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy." Bulletin of the American Meteorological Society 100(12): 2533-2550. [19] Rai, R. K., et al. (2017). "Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain." Boundary-Layer Meteorology 163: 69-89. [20] Vortex-LES (2018). "White Paper." Retrieved 1 July, 2023, from https://www.vortexfdc.com. [21] Fleming, P., et al. (2013). "SOWFA super-controller: A high-fidelity tool for evaluating wind plant control approaches." National Renewable Energy Lab.(NREL), Golden, CO (United States). [22] Smagorinsky, J. (1963). "General circulation experiments with the primitive equations: I. The basic experiment." Monthly Weather Review 91(3): 99-164. [23] Germano, M., et al. (1991). "A dynamic subgrid‐scale eddy viscosity model." Physics of Fluids A: Fluid Dynamics 3(7): 1760-1765. [24] Johlas, H., et al. (2019). "Large eddy simulations of floating offshore wind turbine wakes with coupled platform motion." Journal of Physics: Conference Series 1256(1): 012018. [25] Ke, S., et al. (2019). "Aerodynamic performance and wind-induced responses of large wind turbine systems with meso-scale typhoon effects." Energies 12(19): 3696. [26] Takemi, T., et al. (2019). "Quantitative estimation of strong winds in an urban district during Typhoon Jebi (2018) by merging mesoscale meteorological and large-eddy simulations." SOLA 15: 22-27. [27] Liu, Q., et al. (2021). "Storm‐Scale and Fine‐Scale Boundary Layer Structures of Tropical Cyclones Simulated with the WRF‐LES Framework." Journal of Geophysical Research: Atmospheres 126(21): e2021JD035511. [28] Zhu, P. (2008). "A multiple scale modeling system for coastal hurricane wind damage mitigation." Natural Hazards 47: 577-591. [29] Cécé, R., et al. (2021). "A 30 m scale modeling of extreme gusts during Hurricane Irma (2017) landfall on very small mountainous islands in the Lesser Antilles." Natural Hazards and Earth System Sciences 21(1): 129-145. [30] Talbot, C., et al. (2012). "Nested mesoscale large-eddy simulations with WRF: Performance in real test cases." Journal of Hydrometeorology 13(5): 1421-1441. [31] Haupt, S., et al. (2020). "Report of the Atmosphere to Electrons Land-Based Mesoscale-to-Microscale Coupling Project (FY2020)." Pacific Northwest National Lab.(PNNL), Richland, WA (United States). [32] Draxl, C., et al. (2021). "Coupling mesoscale budget components to large-eddy simulations for wind-energy applications." Boundary-Layer Meteorology 179: 73-98. [33] Allaerts, D., et al. (2020). "Development of a time–height profile assimilation technique for large-eddy simulation." Boundary-Layer Meteorology 176: 329-348. [34] Wang, Y., et al. (2013). "Coupled mesoscale-large-eddy modeling of realistic stable boundary layer turbulence." arXiv preprint arXiv:1307.2484. [35] Haupt, S., et al. (2020). "Mesoscale to microscale coupling for wind energy applications: Addressing the challenges." Journal of Physics: Conference Series 1452(1): 012076. [36] Tao, T., et al. (2015). "Turbulent wind analysis for typhoon attack using WRF-LES." ICWE14 The 14th International Conference on Wind Engineering, Porto Alegre, Brazil. [37] Ke, S., et al. (2019). "Typhoon-induced wind pressure characteristics on large terminal roof based on mesoscale and microscale coupling." Journal of Aerospace Engineering 32(6): 04019093. [38] Wang, Z., et al. (2013). "Extreme dynamic responses of mw-level wind turbine tower in the strong typhoon considering wind-rain loads." Mathematical Problems in Engineering 2013. [39] Arakawa, A., et al. (1977). "Computational design of the basic dynamical processes of the UCLA general circulation model." General circulation models of the atmosphere 17(Supplement C): 173-265. [40] Laprise, R. (1992). "The Euler equations of motion with hydrostatic pressure as an independent variable." Monthly Weather Review 120(1): 197-207. [41] Park, S. H., et al. (2013). "Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case." Monthly Weather Review 141(9): 3116-3129. [42] Moeng, C. H. (1984). "A large-eddy-simulation model for the study of planetary boundary-layer turbulence." Journal of the atmospheric sciences 41(13): 2052-2062. [43] Deardorff, J. W. (1980). "Stratocumulus-capped mixed layers derived from a three-dimensional model." Boundary-Layer Meteorology 18: 495-527. [44] Churchfield, M. J., et al. (2012). "A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics." Journal of turbulence(13): N14. [45] Schumann, U. (1975). "Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli." Journal of computational physics 18(4): 376-404. [46] Leonardi, S., et al. (2006). "Direct numerical and large-eddy simulations of turbulent flows over rough surfaces." AIAA journal 44(11): 2482-2487. [47] Kolmogorov, A. N. (1941). "The local structure of turbulence in incompressible viscous fluid for very large Reynolds." Numbers. In Dokl. Akad. Nauk SSSR 30: 301. [48] Matthew, C., et al. (2012). "Overview of the Simulator fOr Wind Farm Application (SOWFA)." Retrieved 1 July, 2023, from https://www.nrel.gov. [49] Celik, I. B., et al. (2005). "Index of Resolution Quality for Large Eddy Simulations." Journal of Fluids Engineering 127(5): 949-958. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90534 | - |
| dc.description.abstract | 台灣鄰近太平洋且位於易受颱風侵擾的中緯度地區,每年至少受到3至4次的颱風侵襲,其所造成的極端風負載往往是離岸風機結構損壞的主因之一,像是2015年的蘇迪勒颱風以及2016的梅姬颱風都有造成風機嚴重毀損甚至倒塌的案例,因此如何準確評估颱風邊界層中之風場特性為台灣發展離岸風電的重要課題。
本研究應用了中尺度的天氣研究預報模式(Weather Research and Forecasting, WRF)與微尺度的大渦流模擬(large-eddy simulation, LES),透過先進的耦合方法結合兩者優點,將中尺度大氣參數以及微尺度的紊流變化皆包含於模型之中,以求得更高解析度和更貼近真實風場的模擬數據。 中尺度模擬使用的WRF模式是一種數值天氣預報(numerical weather prediction, NWP)系統,其使用大氣和海洋的數學模型,透過現有的大氣科學物理原理,模擬運算三維空間中的天氣變化,得到數小時或是數天的天氣預報。微尺度風場生成則是使用美國國家再生能源實驗室(National Renewable Energy Laboratory, NREL)所開發的開放原始碼程式SOWFA進行大渦流模擬,能考量大氣邊界層中的溫度對流效應以捕捉紊流的實際特性。 藉由日本氣象廳(JMA)及台灣中央氣象局(CWB)提供的颱風資料,本文分析了近年有經過台灣且風速相對較強勁的颱風,最終挑選了2017年過境台灣北部的尼莎(Nesat)颱風做為分析對象,並將颱風過境台灣的過程分成前、中、後三個時間段,觀察颱風在不同階段所表現的風場變化,依所設計的流程模擬後得出風場結果,並與台灣離岸架設之海氣象觀測塔所得實測資料進行比對與探討。 模擬結果顯示中尺度的颱風風場能描述出尼莎颱風在不同階段大致的特性,模擬路徑也能與JMA公布之最佳路徑吻合,但WRF模擬的颱風過境之風速曲線相對於實測資料較為平緩,無法描述風速急降至颱風眼低速區的數值變化,且WRF模擬略為低估了颱風極端風速數值,最大差距低於實測資料約8 m/s。微尺度的耦合風場也能合理地描述紊流特性與結構,模擬之紊流強度在非風眼時段與實測資料相比平均誤差約在20 %以內,但模擬風場的紊流能量與風速標準差在颱風過境後則明顯較小於量測值。 總結而言,以中尺度與微尺度的耦合模型評估颱風邊界層具有一定程度的準確度與可行性,且透過縮小空間尺度以觀察風機數十公尺範圍內的紊流變化也具有顯著的結果,此耦合後的風場預計可用於評估離岸風機於颱風極端風速下的負載情況。 | zh_TW |
| dc.description.abstract | Taiwan is located in the mid-latitude region of the western Pacific Ocean, a favorable area of typhoon impacts. With an average of 3 to 4 typhoons each year, the extreme loads caused by typhoons could lead to severe damage to the structures of offshore wind turbines. Notable examples include the devastating impacts of typhoon Soudelor in 2015 and typhoon Meranti in 2016, which resulted in severe damage and even the collapse of wind turbine structures. Therefore, how to accurately estimate the wind characteristics of typhoon boundary layers is of importance for the development of offshore wind energy in Taiwan.
In this study, we apply the Weather Research and Forecasting (WRF) meso-scale model coupled with micro-scale large-eddy simulation (LES) to consider the atmospheric parameters and generate high-resolution fields which account for more details of small-scale turbulences. WRF model is a numerical weather prediction (NWP) model that utilizes physical models for solving problems of the atmosphere and ocean. It simulates the evolution of 3-D atmospheric fields based on atmospheric dynamics and physics and thus can provide weather forecasts for several days to weeks. The micro-scale simulations are performed using the simulator for wind farm applications (SOWFA) program, which is an open-source software developed by the National Renewable Energy Laboratory (NREL) in the United States. SOWFA employs LES to simulate turbulent flows, considering the effects of temperature convection in the atmospheric boundary layer. Typhoon Nesat in 2017, which passed the northern coast of Taiwan, is selected based on the typhoon data provided by the Japan Meteorological Agency (JMA) and the Central Weather Bureau (CWB) of Taiwan. We divide the typhoon passage in Taiwan into three time periods (pre-typhoon, during typhoon, and post-typhoon), and observe the changes of the wind field during different periods. The wind fields are simulated using a proposed framework and then compared to the observational data of the met mast in the Taiwan’s offshore wind farm for further discussions. The simulation results show that the meso-scale typhoon wind fields can capture the general characteristics of typhoon Nesat during different periods, and the simulation track is also similar to the typhoon best track from JMA. However, the wind speed curve of the typhoon passage simulated by WRF appears relatively smooth compared to the measured data, lacking the drastic drop of wind speed due to the storm eye. Additionally, the WRF simulation slightly underestimates the values of extreme wind speeds associated with the typhoon, with a maximum difference of up to 8 m/s compared to the measurements. The coupled micro-scale model successfully generates wind speed data that matches the observed trends and reasonably describes the characteristics and structure of turbulence. Except for the time period of storm eye, the mean error between the simulated and observational turbulence intensity values is less than 20 %. However, the simulated turbulence kinetic energy and the standard deviation of wind speed are seen smaller than the measured data. In sum, the research results demonstrate that the coupled model of meso- and micro-scale provides a certain level of accuracy and feasibility in evaluating the typhoon boundary layer. Moreover, significant findings have been observed by narrowing down the spatial scale to observe turbulence variations within a range of several tens of meters around wind turbines. The coupled wind field is expected to be useful for assessing the load of offshore wind turbines under extreme wind speeds associated with typhoons. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:31:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:31:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 ix 表目錄 xii 縮寫表 xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 論文架構 7 第二章 模擬方法與流程 9 2.1 觀測塔簡介 9 2.2 颱風簡介 9 2.3 尼莎颱風概述 10 2.4 WRF模式 11 2.4.1 WRF背景概述 11 2.4.2 WRF方程式概述 12 2.4.3 WRF參數設定 15 2.4.4 WRF起始點測試 17 2.4.5 WRF網格測試 21 2.5 SOWFA程式 24 2.5.1 SOWFA背景概述 24 2.5.2 SOWFA方程式概述 24 2.5.3 SOWFA參數設定 26 2.5.4 SOWFA網格測試 27 2.6 耦合方法 31 2.7 模擬流程 32 第三章 中尺度風場模擬結果 35 3.1 尼莎颱風路徑與結構 35 3.2 量測資料與WRF模擬資料比對 43 第四章 微尺度風場模擬結果 49 4.1 紊流結構與特性 49 4.2 量測資料與SOWFA模擬資料比對 57 4.3 紊流能量變化比較 63 4.4 紊流統計分析 67 第五章 結論與建議 72 5.1 成果與討論 72 5.2 未來展望 72 參考文獻 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 風場模擬 | zh_TW |
| dc.subject | 颱風邊界層 | zh_TW |
| dc.subject | WRF-LES耦合模型 | zh_TW |
| dc.subject | 離岸風電 | zh_TW |
| dc.subject | offshore wind energy | en |
| dc.subject | WRF-LES coupled model | en |
| dc.subject | typhoon boundary layers | en |
| dc.subject | wind field simulation | en |
| dc.title | 應用WRF與LES耦合模型分析真實颱風邊界層中之風場特性 | zh_TW |
| dc.title | Study on the characteristics of wind fields in realistic typhoon boundary layers using a WRF-LES coupled model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 連國淵;吳亦莊;林宗岳 | zh_TW |
| dc.contributor.oralexamcommittee | Guo-Yuan Lien;Yi-Chuang Wu;Tzung-Yue Lin | en |
| dc.subject.keyword | 離岸風電,WRF-LES耦合模型,颱風邊界層,風場模擬, | zh_TW |
| dc.subject.keyword | offshore wind energy,WRF-LES coupled model,typhoon boundary layers,wind field simulation, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202303391 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-07 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
