Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張芳嘉zh_TW
dc.contributor.advisorFang-Chia Changen
dc.contributor.author羅勻zh_TW
dc.contributor.authorYun Loen
dc.date.accessioned2023-10-03T16:31:03Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation1. Kudielka, B. M. & Wüst, S. Human models in acute and chronic stress: Assessing determinants of individual hypothalamus–pituitary–adrenal axis activity and reactivity. Stress 13, 1–14 (2010).
2. Jankord, R. & Herman, J. P. Limbic Regulation of Hypothalamo-Pituitary-Adrenocortical Function during Acute and Chronic Stress. Ann. N. Y. Acad. Sci. 1148, 64–73 (2008).
3. Mcewen, B. S. Protection and Damage from Acute and Chronic Stress: Allostasis and Allostatic Overload and Relevance to the Pathophysiology of Psychiatric Disorders. Ann. N. Y. Acad. Sci. 1032, 1–7 (2004).
4. Fiksdal, A. et al. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology 102, 44–52 (2019).
5. Carrion, V. G., Weems, C. F. & Reiss, A. L. Stress Predicts Brain Changes in Children: A Pilot Longitudinal Study on Youth Stress, Posttraumatic Stress Disorder, and the Hippocampus. Pediatrics 119, 509–516 (2007).
6. Hoffman, A. N., Lorson, N. G., Sanabria, F., Foster Olive, M. & Conrad, C. D. Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder. Neurobiol. Learn. Mem. 112, 139–147 (2014).
7. Blanco, C. Epidemiology of PTSD. in Post-traumatic stress disorder 49–74 (Wiley Blackwell, 2011). doi:10.1002/9781119998471.ch2.
8. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 4558 (2019).
9. Friedman, M. J., Resick, P. A., Bryant, R. A. & Brewin, C. R. Considering PTSD for DSM-5. Depress. Anxiety 28, 750–769 (2011).
10. First, M. B. DSM-5® Handbook of Differential Diagnosis. (American Psychiatric Publishing, 2013). doi:10.1176/appi.books.9781585629992.
11. Tarrier, N. & Gregg, L. Suicide risk in civilian PTSD patients: Predictors of suicidal ideation, planning and attempts. Soc. Psychiatry Psychiatr. Epidemiol. 39, (2004).
12. Parsons, R. G. & Ressler, K. J. Implications of memory modulation for post-traumatic stress and fear disorders. Nat. Neurosci. 16, 146–153 (2013).
13. Johnson, L. R., McGuire, J., Lazarus, R. & Palmer, A. A. Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology 62, 638–646 (2012).
14. Ressler, R. L. & Maren, S. Synaptic encoding of fear memories in the amygdala. Curr. Opin. Neurobiol. 54, 54–59 (2019).
15. VanItallie, T. B. Stress: A risk factor for serious illness. Metabolism 51, 40–45 (2002).
16. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).
17. Pace-Schott, E. F., Germain, A. & Milad, M. R. Sleep and REM sleep disturbance in the pathophysiology of PTSD: the role of extinction memory. Biol. Mood Anxiety Disord. 5, 3 (2015).
18. Fournier, N. M. & Duman, R. S. Illuminating Hippocampal Control of Fear Memory and Anxiety. Neuron 77, 803–806 (2013).
19. Flandreau, E. I. & Toth, M. Animal Models of PTSD: A Critical Review. Curr. Top. Behav. Neurosci. 38, 47–68 (2018).
20. Colucci, P. et al. Predicting susceptibility and resilience in an animal model of post-traumatic stress disorder (PTSD). Transl. Psychiatry 10, 243 (2020).
21. VanElzakker, M. B., Kathryn Dahlgren, M., Caroline Davis, F., Dubois, S. & Shin, L. M. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol. Learn. Mem. 113, 3–18 (2014).
22. Maren, S. Neurobiology of Pavlovian Fear Conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001).
23. Kim, J. J. & Jung, M. W. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neurosci. Biobehav. Rev. 30, 188–202 (2006).
24. Yamamoto, S. et al. Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress. Anxiety 26, 1110–1117 (2009).
25. Verbitsky, A., Dopfel, D. & Zhang, N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl. Psychiatry 10, 132 (2020).
26. Hall, J., Thomas, K. L. & Everitt, B. J. Cellular Imaging of zif268 Expression in the Hippocampus and Amygdala during Contextual and Cued Fear Memory Retrieval: Selective Activation of Hippocampal CA1 Neurons during the Recall of Contextual Memories. J. Neurosci. 21, 2186–2193 (2001).
27. Kirlic, N., Young, J. & Aupperle, R. L. Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behav. Res. Ther. 96, 14–29 (2017).
28. Belzung, C. & Griebel, G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149 (2001).
29. Kumar, V., Bhat, Z. A. & Kumar, D. Animal models of anxiety: A comprehensive review. J. Pharmacol. Toxicol. Methods 68, 175–183 (2013).
30. Zhang, Y., Ouyang, K., Lipina, T. V., Wang, H. & Zhou, Q. Conditioned stimulus presentations alter anxiety level in fear-conditioned mice. Mol. Brain 12, 28 (2019).
31. Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1, 848–858 (2006).
32. Antunes, M. & Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93–110 (2012).
33. Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J. & Woodgett, J. R. Assessment of Social Interaction Behaviors. J. Vis. Exp. 2473 (2011) doi:10.3791/2473.
34. Diehl, L. A. et al. Long-Lasting Effects of Maternal Separation on an Animal Model of Post-Traumatic Stress Disorder: Effects on Memory and Hippocampal Oxidative Stress. Neurochem. Res. 37, 700–707 (2012).
35. Castagné, V., Moser, P., Roux, S. & Porsolt, R. D. Rodent Models of Depression: Forced Swim and Tail Suspension Behavioral Despair Tests in Rats and Mice. Curr. Protoc. Pharmacol. 49, (2010).
36. Mikics, E., Baranyi, J. & Haller, J. Rats exposed to traumatic stress bury unfamiliar objects — A novel measure of hyper-vigilance in PTSD models? Physiol. Behav. 94, 341–348 (2008).
37. Koolhaas, J. M. et al. The Resident-intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress. J. Vis. Exp. 4367 (2013) doi:10.3791/4367.
38. Hsiao, Y.-T., Lo, Y., Yi, P.-L. & Chang, F.-C. Hypocretin in median raphe nucleus modulates footshock stimuli-induced REM sleep alteration. Sci. Rep. 9, 8198 (2019).
39. Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl. Acad. Sci. 102, 9371–9376 (2005).
40. Krishnan, V. et al. Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions. Cell 131, 391–404 (2007).
41. Adamec, R. E. & Shallow, T. Lasting effects on rodent anxiety of a single exposure to a cat. Physiol. Behav. 54, 101–109 (1993).
42. Armario, A., Vallès, A., Dal-Zotto, S., Márquez, C. & Belda, X. A Single Exposure to Severe Stressors Causes Long-term Desensitisation of the Physiological Response to the Homotypic Stressor. Stress 7, 157–172 (2004).
43. Andero, R. et al. Amygdala-Dependent Fear Is Regulated by Oprl1 in Mice and Humans with PTSD. Sci. Transl. Med. 5, 188ra73-188ra73 (2013).
44. Cullen, P. K., Gilman, T. L., Winiecki, P., Riccio, D. C. & Jasnow, A. M. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization. Neurobiol. Learn. Mem. 124, 19–27 (2015).
45. Louvart, H., Maccari, S., Ducrocq, F., Thomas, P. & Darnaudéry, M. Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology 30, 316–324 (2005).
46. Mikics, É. et al. Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology 33, 1198–1210 (2008).
47. Siegmund, A. & Wotjak, C. T. A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J. Psychiatr. Res. 41, 848–860 (2007).
48. Knox, D. et al. Single prolonged stress disrupts retention of extinguished fear in rats. Learn. Mem. 19, 43–49 (2012).
49. Zhe, D., Fang, H. & Yuxiu, S. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats. ACTA Histochem. Cytochem. 41, 89–95 (2008).
50. Harvey, B. H., Brand, L., Jeeva, Z. & Stein, D. J. Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder. Physiol. Behav. 87, 881–890 (2006).
51. Wu, Z. et al. Behavioral changes over time in post-traumatic stress disorder: Insights from a rat model of single prolonged stress. Behav. Processes 124, 123–129 (2016).
52. Khan, S. & Liberzon, I. Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology (Berl.) 172, 225–229 (2004).
53. Vanderheyden, W. M. et al. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD. Exp. Brain Res. 233, 2335–2346 (2015).
54. Liberzon, I. & Abelson, J. L. Context Processing and the Neurobiology of Post-Traumatic Stress Disorder. Neuron 92, 14–30 (2016).
55. Luchkina, N. V. & Bolshakov, V. Y. Mechanisms of fear learning and extinction: synaptic plasticity–fear memory connection. Psychopharmacology (Berl.) 236, 163–182 (2019).
56. Chaaya, N., Battle, A. R. & Johnson, L. R. An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus. Neurosci. Biobehav. Rev. 92, 43–54 (2018).
57. Soya, S. & Sakurai, T. Orexin as a modulator of fear-related behavior: Hypothalamic control of noradrenaline circuit. Brain Res. 1731, 146037 (2020).
58. Rozeske, R. R., Valerio, S., Chaudun, F. & Herry, C. Prefrontal neuronal circuits of contextual fear conditioning: Prefrontal neuronal circuits of contextual fear. Genes Brain Behav. 14, 22–36 (2015).
59. Vianna, D. M. L. & Brandão, M. L. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz. J. Med. Biol. Res. 36, 557–566 (2003).
60. Barot, S. K., Chung, A., Kim, J. J. & Bernstein, I. L. Functional Imaging of Stimulus Convergence in Amygdalar Neurons during Pavlovian Fear Conditioning. PLoS ONE 4, e6156 (2009).
61. Bhattacharya, S. et al. Altered AMPA receptor expression plays an important role in inducing bidirectional synaptic plasticity during contextual fear memory reconsolidation. Neurobiol. Learn. Mem. 139, 98–108 (2017).
62. Zelikowsky, M. et al. Prefrontal microcircuit underlies contextual learning after hippocampal loss. Proc. Natl. Acad. Sci. 110, 9938–9943 (2013).
63. Wiltgen, B. J. Context Fear Learning in the Absence of the Hippocampus. J. Neurosci. 26, 5484–5491 (2006).
64. Riedel, G., Casabona, G., Platt, B., Macphail, E. M. & Nicoletti, F. Fear conditioning-induced time- and subregion-specific increase in expression of mGlu5 receptor protein in rat hippocampus. Neuropharmacology 39, 1943–1951 (2000).
65. Fanselow, M. S. & Dong, H.-W. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 65, 7–19 (2010).
66. Wahlstrom, K. L. et al. Basolateral Amygdala Inputs to the Medial Entorhinal Cortex Selectively Modulate the Consolidation of Spatial and Contextual Learning. J. Neurosci. 38, 2698–2712 (2018).
67. Sparta, D. R. et al. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear. Front. Behav. Neurosci. 8, (2014).
68. Huff, M. L., Emmons, E. B., Narayanan, N. S. & LaLumiere, R. T. Basolateral amygdala projections to ventral hippocampus modulate the consolidation of footshock, but not contextual, learning in rats. Learn. Mem. 23, 51–60 (2016).
69. Xu, C. et al. Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval. Cell 167, 961-972.e16 (2016).
70. Pape, H.-C., Narayanan, R. T., Smid, J., Stork, O. & Seidenbecher, T. Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus 15, 874–880 (2005).
71. Rudy, J. W. & Matus-Amat, P. The Ventral Hippocampus Supports a Memory Representation of Context and Contextual Fear Conditioning: Implications for a Unitary Function of the Hippocampus. Behav. Neurosci. 119, 154–163 (2005).
72. Zelikowsky, M., Hersman, S., Chawla, M. K., Barnes, C. A. & Fanselow, M. S. Neuronal Ensembles in Amygdala, Hippocampus, and Prefrontal Cortex Track Differential Components of Contextual Fear. J. Neurosci. 34, 8462–8466 (2014).
73. Corcoran, K. A., Frick, B. J., Radulovic, J. & Kay, L. M. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol. Learn. Mem. 127, 93–101 (2016).
74. Jin, J. & Maren, S. Prefrontal-Hippocampal Interactions in Memory and Emotion. Front. Syst. Neurosci. 9, (2015).
75. Hoover, W. B. & Vertes, R. P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179 (2007).
76. Santos, T. B., Wallau, A. E., Kramer-Soares, J. C. & Oliveira, M. G. M. Functional interaction of ventral hippocampal CA1 region and prelimbic cortex contributes to the encoding of contextual fear association of stimuli separated in time. Neurobiol. Learn. Mem. 171, 107216 (2020).
77. Kwon, J.-T., Jhang, J., Kim, H.-S., Lee, S. & Han, J.-H. Brain region-specific activity patterns after recent or remote memory retrieval of auditory conditioned fear. Learn. Mem. 19, 487–494 (2012).
78. LeDoux, J. E. Emotion Circuits in the Brain. Annu. Rev. Neurosci. 23, 155–184 (2000).
79. Lanuza, E., Moncho-Bogani, J. & LeDoux, J. E. Unconditioned stimulus pathways to the amygdala: Effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience 155, 959–968 (2008).
80. Bergstrom, H. C. The neurocircuitry of remote cued fear memory. Neurosci. Biobehav. Rev. 71, 409–417 (2016).
81. Oh, J.-P. & Han, J.-H. A critical role of hippocampus for formation of remote cued fear memory. Mol. Brain 13, 112 (2020).
82. Roesler, R. & McGaugh, J. L. The Entorhinal Cortex as a Gateway for Amygdala Influences on Memory Consolidation. Neuroscience 497, 86–96 (2022).
83. Kim, W. B. & Cho, J.-H. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala. Neuron 95, 1129-1146.e5 (2017).
84. Narayanan, R. T. et al. Dissociated theta phase synchronization in amygdalo- hippocampal circuits during various stages of fear memory: Amygdalo-hippocampal correlate of fear memory. Eur. J. Neurosci. 25, 1823–1831 (2007).
85. Lei, Z. et al. Chemogenetic Activation of Astrocytes in the Basolateral Amygdala Contributes to Fear Memory Formation by Modulating the Amygdala–Prefrontal Cortex Communication. Int. J. Mol. Sci. 23, 6092 (2022).
86. Carrasco, G. A. & Van de Kar, L. D. Neuroendocrine pharmacology of stress. Eur. J. Pharmacol. 463, 235–272 (2003).
87. Miller, D. B. & O’Callaghan, J. P. Neuroendocrine aspects of the response to stress. Metabolism 51, 5–10 (2002).
88. Tsigos, C. & Chrousos, G. P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871 (2002).
89. Bowers, M. E., Choi, D. C. & Ressler, K. J. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol. Behav. 107, 699–710 (2012).
90. Johnson, P. L., Molosh, A., Fitz, S. D., Truitt, W. A. & Shekhar, A. Orexin, stress, and anxiety/panic states. in Progress in Brain Research vol. 198 133–161 (Elsevier, 2012).
91. Chrousos, G. P. Regulation and Dysregulation of the Hypothalamic-Pituitary-Adrenal Axis: The Corticotropin-Releasing Hormone Perspective. Endocrinol. Metab. Clin. North Am. 21, 833–858 (1992).
92. Joëls, M., Karst, H. & Sarabdjitsingh, R. A. The stressed brain of humans and rodents. Acta Physiol. 223, e13066 (2018).
93. Herman, J. P., Ostrander, M. M., Mueller, N. K. & Figueiredo, H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201–1213 (2005).
94. de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joëls, M. Brain Corticosteroid Receptor Balance in Health and Disease*. Endocr. Rev. 19, 269–301 (1998).
95. Boucher, P. & Plusquellec, P. Acute Stress Assessment From Excess Cortisol Secretion: Fundamentals and Perspectives. Front. Endocrinol. 10, 749 (2019).
96. Koob, G. F. Corticotropin-releasing factor, norepinephrine, and stress. Biol. Psychiatry 46, 1167–1180 (1999).
97. James, M. H., Campbell, E. J. & Dayas, C. V. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders. in Behavioral Neuroscience of Orexin/Hypocretin (eds. Lawrence, A. J. & de Lecea, L.) vol. 33 197–219 (Springer International Publishing, 2017).
98. Kim, H. et al. Expression of neuropeptide Y and cholecystokinin in the rat brain by chronic mild stress. Brain Res. 983, 201–208 (2003).
99. Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides 38, 213–224 (2004).
100. Beinfeld, M. C. & Palkovits, M. Distribution of cholecystokinin (CCK) in the hypothalamus and limbic system of the rat. Neuropeptides 2, 123–129 (1981).
101. Sakurai, T. et al. Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior. Cell 92, 573–585 (1998).
102. Peyron, C. et al. Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems. J. Neurosci. 18, 9996–10015 (1998).
103. Marcus, J. N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25 (2001).
104. Flores, Á., Saravia, R., Maldonado, R. & Berrendero, F. Orexins and fear: implications for the treatment of anxiety disorders. Trends Neurosci. 38, 550–559 (2015).
105. Kaplan, G. B., Lakis, G. A. & Zhoba, H. Sleep-wake and arousal dysfunctions in post-traumatic stress disorder: Role of orexin systems. Brain Res. Bull. 186, 106–122 (2022).
106. Yaeger, J. D. W. et al. Orexin 1 Receptor Antagonism in the Basolateral Amygdala Shifts the Balance From Pro- to Antistress Signaling and Behavior. Biol. Psychiatry 91, 841–852 (2022).
107. Abounoori, M., Maddah, M. M. & Ardeshiri, M. R. Orexin neuropeptides modulate the hippocampal-dependent memory through basolateral amygdala interconnections. Cereb. Circ. - Cogn. Behav. 3, 100035 (2022).
108. Pawlak, R., Magarinos, A. M., Melchor, J., McEwen, B. & Strickland, S. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat. Neurosci. 6, 168–174 (2003).
109. Bali, A. & Jaggi, A. S. Electric foot shock stress: a useful tool in neuropsychiatric studies. Rev. Neurosci. 26, 655–677 (2015).
110. Goldstein, L. E., Rasmusson, A. M., Bunney, B. S. & Roth, R. H. Role of the Amygdala in the Coordination of Behavioral, Neuroendocrine, and Prefrontal Cortical Monoamine Responses to Psychological Stress in the Rat. J. Neurosci. 16, 4787–4798 (1996).
111. Myers, B. & Greenwood-Van Meerveld, B. Elevated corticosterone in the amygdala leads to persistant increases in anxiety-like behavior and pain sensitivity. Behav. Brain Res. 214, 465–469 (2010).
112. Shepard, J. D., Barron, K. W. & Myers, D. A. Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res. 861, 288–295 (2000).
113. Hajós-Korcsok, É. et al. Rapid habituation of hippocampal serotonin and norepinephrine release and anxiety-related behaviors, but not plasma corticosterone levels, to repeated footshock stress in rats. Pharmacol. Biochem. Behav. 74, 609–616 (2003).
114. Sakurai, T. et al. Input of Orexin/Hypocretin Neurons Revealed by a Genetically Encoded Tracer in Mice. Neuron 46, 297–308 (2005).
115. Winsky-Sommerer, R., Boutrel, B. & de Lecea, L. Stress and Arousal: The Corticotrophin-Releasing Factor/Hypocretin Circuitry. Mol. Neurobiol. 32, 285–294 (2005).
116. Berridge, C. W., España, R. A. & Vittoz, N. M. Hypocretin/orexin in arousal and stress. Brain Res. 1314, 91–102 (2010).
117. Giardino, W. J. & de Lecea, L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr. Opin. Neurobiol. 29, 103–108 (2014).
118. Wu, M., Zaborszky, L., Hajszan, T., van den Pol, A. N. & Alreja, M. Hypocretin/Orexin Innervation and Excitation of Identified Septohippocampal Cholinergic Neurons. J. Neurosci. 24, 3527–3536 (2004).
119. Kim, S.-Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013).
120. Lungwitz, E. A. et al. Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol. Behav. 107, 726–732 (2012).
121. Adhikari, A. Distributed circuits underlying anxiety. Front. Behav. Neurosci. 8, (2014).
122. Wang, D. et al. Lateral septum-lateral hypothalamus circuit dysfunction in comorbid pain and anxiety. Mol. Psychiatry 28, 1090–1100 (2023).
123. Anthony, T. E. et al. Control of Stress-Induced Persistent Anxiety by an Extra-Amygdala Septohypothalamic Circuit. Cell 156, 522–536 (2014).
124. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).
125. Paretkar, T. & Dimitrov, E. The Central Amygdala Corticotropin-releasing hormone (CRH) Neurons Modulation of Anxiety-like Behavior and Hippocampus-dependent Memory in Mice. Neuroscience 390, 187–197 (2018).
126. Pace-Schott, E. F., Germain, A. & Milad, M. R. Effects of sleep on memory for conditioned fear and fear extinction. Psychol. Bull. 141, 835–857 (2015).
127. Graves, L. A., Heller, E. A., Pack, A. I. & Abel, T. Sleep Deprivation Selectively Impairs Memory Consolidation for Contextual Fear Conditioning. Learn. Mem. 10, 168–176 (2003).
128. Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).
129. Puentes-Mestril, C., Roach, J., Niethard, N., Zochowski, M. & Aton, S. J. How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep 42, zsz095 (2019).
130. Adamantidis, A. R., Gutierrez Herrera, C. & Gent, T. C. Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 20, 746–762 (2019).
131. Kumar, T. & Jha, S. K. Influence of cued-fear conditioning and its impairment on NREM sleep. Neurobiol. Learn. Mem. 144, 155–165 (2017).
132. Goldstein, A. N. & Walker, M. P. The Role of Sleep in Emotional Brain Function. Annu. Rev. Clin. Psychol. 10, 679–708 (2014).
133. Gott, J. A., Liley, D. T. J. & Hobson, J. A. Towards a Functional Understanding of PGO Waves. Front. Hum. Neurosci. 11, (2017).
134. Ravassard, P. et al. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP. Cereb. Cortex 26, 1488–1500 (2016).
135. Kumar, T. & Jha, S. K. Sleep Deprivation Impairs Consolidation of Cued Fear Memory in Rats. PLoS ONE 7, e47042 (2012).
136. Popa, D., Duvarci, S., Popescu, A. T., Lena, C. & Pare, D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc. Natl. Acad. Sci. 107, 6516–6519 (2010).
137. Ognjanovski, N., Broussard, C., Zochowski, M. & Aton, S. J. Hippocampal Network Oscillations Rescue Memory Consolidation Deficits Caused by Sleep Loss. Cereb. Cortex 28, 3711–3723 (2018).
138. Sanford, L. D., Yang, L., Wellman, L. L., Liu, X. & Tang, X. Differential Effects of Controllable and Uncontrollable Footshock Stress on Sleep in Mice. Sleep 33, 621–630 (2010).
139. Hsiao, Y.-T., Jou, S.-B., Yi, P.-L. & Chang, F.-C. Activation of GABAergic pathway by hypocretin in the median raphe nucleus (MRN) mediates stress-induced theta rhythm in rats. Behav. Brain Res. 233, 224–231 (2012).
140. Hsiao, Y.-T., Lo, Y., Yi, P.-L. & Chang, F.-C. Hypocretin in median raphe nucleus modulates footshock stimuli-induced REM sleep alteration. Sci. Rep. 9, 8198 (2019).
141. Swenson, R. M. & Vogel, W. H. Plasma catecholamine and corticosterone as well as brain catecholamine changes during coping in rats exposed to stressful footshock. Pharmacol. Biochem. Behav. 18, 689–693 (1983).
142. Tsujino, N. & Sakurai, T. Orexin/Hypocretin: A Neuropeptide at the Interface of Sleep, Energy Homeostasis, and Reward System. Pharmacol. Rev. 61, 162–176 (2009).
143. Carter, M. E. et al. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc. Natl. Acad. Sci. 109, E2635–E2644 (2012).
144. Boeve, B. F. et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130, 2770–2788 (2007).
145. Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip–flop switch for control of REM sleep. Nature 441, 589–594 (2006).
146. Luppi, P.-H., Clément, O. & Fort, P. Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Curr. Opin. Neurobiol. 23, 786–792 (2013).
147. Carter, M. E. et al. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc. Natl. Acad. Sci. 109, (2012).
148. Yang, C. et al. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats. Neuropeptides 75, 25–33 (2019).
149. Morris, L. S., McCall, J. G., Charney, D. S. & Murrough, J. W. The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci. Adv. 4, 239821282093032 (2020).
150. Lowry, C. A. et al. Serotonergic Systems, Anxiety, and Affective Disorder. Ann. N. Y. Acad. Sci. 1148, 86–94 (2008).
151. Schöner, J., Heinz, A., Endres, M., Gertz, K. & Kronenberg, G. Post-traumatic stress disorder and beyond: an overview of rodent stress models. J. Cell. Mol. Med. 21, 2248–2256 (2017).
152. Whitaker, A. M., Gilpin, N. W. & Edwards, S. Animal models of post-traumatic stress disorder and recent neurobiological insights. Behav. Pharmacol. 25, 398–409 (2014).
153. Hokenson, R. et al. Multiple Simultaneous Acute Stresses in Mice: Single or Repeated Induction. BIO-Protoc. 10, (2020).
154. Souza, R. R., Noble, L. J. & McIntyre, C. K. Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD. Front. Pharmacol. 8, 615 (2017).
155. Johnson, L. R., McGuire, J., Lazarus, R. & Palmer, A. A. Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology 62, 638–646 (2012).
156. Maren, S. Neurobiology of Pavlovian Fear Conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001).
157. Knox, D., Nault, T., Henderson, C. & Liberzon, I. Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model. Neuroscience 223, 163–173 (2012).
158. Yaribeygi, H., Panahi, Y., Sahraei, H., Johnston, T. P. & Sahebkar, A. The impact of stress on body function: a review. EXCLI J. 16Doc1057 ISSN 1611-2156 (2017) doi:10.17179/EXCLI2017-480.
159. Marshall-Berenz, E. C., Vujanovic, A. A. & Zvolensky, M. J. Main and interactive effects of a nonclinical panic attack history and distress tolerance in relation to PTSD symptom severity. J. Anxiety Disord. 25, 185–191 (2011).
160. Basta, M., Chrousos, G. P., Vela-Bueno, A. & Vgontzas, A. N. Chronic Insomnia and the Stress System. Sleep Med. Clin. 2, 279–291 (2007).
161. Chaby, L. E., Cavigelli, S. A., Hirrlinger, A. M., Caruso, M. J. & Braithwaite, V. A. Chronic unpredictable stress during adolescence causes long-term anxiety. Behav. Brain Res. 278, 492–495 (2015).
162. Genzel, L., Spoormaker, V. I., Konrad, B. N. & Dresler, M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol. Learn. Mem. 122, 110–121 (2015).
163. Hegde, P., Jayakrishnan, H. R., Chattarji, S., Kutty, B. M. & Laxmi, T. R. Chronic stress-induced changes in REM sleep on theta oscillations in the rat hippocampus and amygdala. Brain Res. 1382, 155–164 (2011).
164. Pace-Schott, E. F., Germain, A. & Milad, M. R. Sleep and REM sleep disturbance in the pathophysiology of PTSD: the role of extinction memory. Biol. Mood Anxiety Disord. 5, 3 (2015).
165. Straus, L. D., Acheson, D. T., Risbrough, V. B. & Drummond, S. P. A. Sleep Deprivation Disrupts Recall of Conditioned Fear Extinction. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 123–129 (2017).
166. Wright, K. P. et al. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain. Behav. Immun. 47, 24–34 (2015).
167. Fu, J. et al. Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus-independent tasks in rats. Neuroscience 144, 1186–1192 (2007).
168. Yoshida, K., McCormack, S., España, R. A., Crocker, A. & Scammell, T. E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845–861 (2006).
169. Chang, F.-C. & Opp, M. R. Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 275, R793–R802 (1998).
170. Liu, X., Yang, L., Wellman, L. L., Tang, X. & Sanford, L. D. GABAergic Antagonism of the Central Nucleus of the Amygdala Attenuates Reductions in Rapid Eye Movement Sleep After Inescapable Footshock Stress. Sleep 32, 888–896 (2009).
171. Tang, X., Xiao, J., Liu, X. & Sanford, L. D. Strain differences in the influence of open field exposure on sleep in mice. Behav. Brain Res. 154, 137–147 (2004).
172. Tang, X., Liu, X., Yang, L. & Sanford, L. D. Rat strain differences in sleep after acute mild stressors and short-term sleep loss. Behav. Brain Res. 160, 60–71 (2005).
173. Smith, C. T. Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learn. Mem. 11, 714–719 (2004).
174. Liu, X., Tang, X. & Sanford, L. D. Fear-conditioned suppression of REM sleep: relationship to Fos expression patterns in limbic and brainstem regions in BALB/cJ mice. Brain Res. 991, 1–17 (2003).
175. Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).
176. Soya, S. et al. Orexin modulates behavioral fear expression through the locus coeruleus. Nat. Commun. 8, 1606 (2017).
177. Tsujino, N. & Sakurai, T. Role of orexin in modulating arousal, feeding, and motivation. Front. Behav. Neurosci. 7, (2013).
178. Chaaya, N., Battle, A. R. & Johnson, L. R. An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus. Neurosci. Biobehav. Rev. 92, 43–54 (2018).
179. Kim, W. B. & Cho, J.-H. Encoding of contextual fear memory in hippocampal–amygdala circuit. Nat. Commun. 11, 1382 (2020).
180. Reppucci, C. J. & Petrovich, G. D. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct. Funct. 221, 2937–2962 (2016).
181. Tsunematsu, T. et al. Acute Optogenetic Silencing of Orexin/Hypocretin Neurons Induces Slow-Wave Sleep in Mice. J. Neurosci. 31, 10529–10539 (2011).
182. de Lecea, L. Optogenetic Control of Hypocretin (Orexin) Neurons and Arousal Circuits. in Sleep, Neuronal Plasticity and Brain Function (eds. Meerlo, P., Benca, R. M. & Abel, T.) vol. 25 367–378 (Springer Berlin Heidelberg, 2014).
183. Monti, J. M. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med. Rev. 14, 319–327 (2010).
184. Breton-Provencher, V. & Sur, M. Active control of arousal by a locus coeruleus GABAergic circuit. Nat. Neurosci. 22, 218–228 (2019).
185. Adamantidis, A. R., Gutierrez Herrera, C. & Gent, T. C. Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 20, 746–762 (2019).
186. Jalewa, J. et al. Neural Circuit Interactions between the Dorsal Raphe Nucleus and the Lateral Hypothalamus: An Experimental and Computational Study. PLoS ONE 9, e88003 (2014).
187. Saito, Y. C. et al. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. J. Neurosci. 38, 6366–6378 (2018).
188. Hsiao, Y.-T., Yi, P.-L., Cheng, C.-H. & Chang, F.-C. Disruption of footshock-induced theta rhythms by stimulating median raphe nucleus reduces anxiety in rats. Behav. Brain Res. 247, 193–200 (2013).
189. Etkin, A. Functional Neuroanatomy of Anxiety: A Neural Circuit Perspective. in Behavioral Neurobiology of Anxiety and Its Treatment (eds. Stein, M. B. & Steckler, T.) vol. 2 251–277 (Springer Berlin Heidelberg, 2009).
190. Sierra-Mercado, D., Padilla-Coreano, N. & Quirk, G. J. Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear. Neuropsychopharmacology 36, 529–538 (2011).
191. Bryant, R. A. et al. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: An fMRI study. Hum. Brain Mapp. 29, 517–523 (2008).
192. Zotev, V. et al. Real-time fMRI neurofeedback training of the amygdala activity with simultaneous EEG in veterans with combat-related PTSD. NeuroImage Clin. 19, 106–121 (2018).
193. Dunlop, B. W. & Wong, A. The hypothalamic-pituitary-adrenal axis in PTSD: Pathophysiology and treatment interventions. Prog. Neuropsychopharmacol. Biol. Psychiatry 89, 361–379 (2019).
194. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. (American Psychiatric Association, 2013). doi:10.1176/appi.books.9780890425596.
195. Gameiro, G. H. et al. Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiol. Behav. 87, 643–649 (2006).
196. Van Dijken, H. H., Van Der Heyden, J. A. M., Mos, J. & Tilders, F. J. H. Inescapable footshocks induce progressive and long-lasting behavioural changes in male rats. Physiol. Behav. 51, 787–794 (1992).
197. Vallès, A., Martí, O. & Armario, A. Long-term effects of a single exposure to immobilization: A C-fos mRNA study of the response to the homotypic stressor in the rat brain. J. Neurobiol. 66, 591–602 (2006).
198. Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl. Acad. Sci. 102, 9371–9376 (2005).
199. Belda, X. et al. Exposure to Severe Stressors Causes Long-lasting Dysregulation of Resting and Stress-induced Activation of the Hypothalamic-Pituitary-Adrenal Axis. Ann. N. Y. Acad. Sci. 1148, 165–173 (2008).
200. Libovner, Y. et al. Repeated Exposure to Multiple Concurrent Stresses Induce Circuit Specific Loss of Inputs to the Posterior Parietal Cortex. J. Neurosci. 40, 1849–1861 (2020).
201. Liberzon, I., Krstov, M. & Young, E. A. Stress-restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology 22, 443–453 (1997).
202. Lisieski, M. J., Eagle, A. L., Conti, A. C., Liberzon, I. & Perrine, S. A. Single-Prolonged Stress: A Review of Two Decades of Progress in a Rodent Model of Post-traumatic Stress Disorder. Front. Psychiatry 9, 196 (2018).
203. Imanaka, A., Morinobu, S., Toki, S. & Yamawaki, S. Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav. Brain Res. 173, 129–137 (2006).
204. Knox, D., Perrine, S. A., George, S. A., Galloway, M. P. & Liberzon, I. Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci. Lett. 480, 16–20 (2010).
205. Yehuda, R. Dose-Response Changes in Plasma Cortisol and Lymphocyte Glucocorticoid Receptors Following Dexamethasone Administration in Combat Veterans With and Without Posttraumatic Stress Disorder. Arch. Gen. Psychiatry 52, 583 (1995).
206. Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).
207. Giustino, T. F. & Maren, S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front. Behav. Neurosci. 9, (2015).
208. Kohda, K. et al. Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: A putative post-traumatic stress disorder model. Neuroscience 148, 22–33 (2007).
209. Levy-Gigi, E., Szabó, C., Kelemen, O. & Kéri, S. Association Among Clinical Response, Hippocampal Volume, and FKBP5 Gene Expression in Individuals with Posttraumatic Stress Disorder Receiving Cognitive Behavioral Therapy. Biol. Psychiatry 74, 793–800 (2013).
210. Li, X. M., Han, F., Liu, D. J. & Shi, Y. X. Single-prolonged stress induced mitochondrial-dependent apoptosis in hippocampus in the rat model of post-traumatic stress disorder. J. Chem. Neuroanat. 40, 248–255 (2010).
211. Han, F., Yan, S. & Shi, Y. Single-Prolonged Stress Induces Endoplasmic Reticulum - Dependent Apoptosis in the Hippocampus in a Rat Model of Post-Traumatic Stress Disorder. PLoS ONE 8, e69340 (2013).
212. Piggott, V. M. et al. Single-Prolonged Stress Impairs Prefrontal Cortex Control of Amygdala and Striatum in Rats. Front. Behav. Neurosci. 13, 18 (2019).
213. El Khoury-Malhame, M. et al. Amygdala activity correlates with attentional bias in PTSD. Neuropsychologia 49, 1969–1973 (2011).
214. Rabinak, C. A. et al. Altered Amygdala Resting-State Functional Connectivity in Post-Traumatic Stress Disorder. Front. Psychiatry 2, (2011).
215. Lee, B. et al. Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder. J. Nat. Med. 70, 133–144 (2016).
216. Lee, B. et al. Effects of systemic administration of ibuprofen on stress response in a rat model of post-traumatic stress disorder. Korean J. Physiol. Pharmacol. 20, 357 (2016).
217. Toledano, D. & Gisquet-Verrier, P. Only susceptible rats exposed to a model of PTSD exhibit reactivity to trauma-related cues and other symptoms: An effect abolished by a single amphetamine injection. Behav. Brain Res. 272, 165–174 (2014).
218. Nedelcovych, M. T. et al. A Rodent Model of Traumatic Stress Induces Lasting Sleep and Quantitative Electroencephalographic Disturbances. ACS Chem. Neurosci. 6, 485–493 (2015).
219. Vanderheyden, W. M., Poe, G. R. & Liberzon, I. Trauma exposure and sleep: using a rodent model to understand sleep function in PTSD. Exp. Brain Res. 232, 1575–1584 (2014).
220. Maercker, A., Michael, T., Fehm, L., Becker, E. S. & Margraf, J. Age of traumatisation as a predictor of post-traumatic stress disorder or major depression in young women. Br. J. Psychiatry 184, 482–487 (2004).
221. Wang, W. et al. A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci. Lett. 441, 237–241 (2008).
222. Aikins, D. E., Strader, J. A., Kohler, R. J., Bihani, N. & Perrine, S. A. Differences in hippocampal serotonergic activity in a mouse single prolonged stress paradigm impact discriminant fear acquisition and retention. Neurosci. Lett. 639, 162–166 (2017).
223. Rauch, S. L., Shin, L. M. & Phelps, E. A. Neurocircuitry Models of Posttraumatic Stress Disorder and Extinction: Human Neuroimaging Research—Past, Present, and Future. Biol. Psychiatry 60, 376–382 (2006).
224. Bolles, R. C. & Collier, A. C. The effect of predictive cues on freezing in rats. Anim. Learn. Behav. 4, 6–8 (1976).
225. Anagnostaras, S. G. Automated assessment of Pavlovian conditioned freezing and shock reactivity in mice using the VideoFreeze system. Front. Behav. Neurosci. 4, (2010).
226. Lesting, J. et al. Patterns of Coupled Theta Activity in Amygdala-Hippocampal-Prefrontal Cortical Circuits during Fear Extinction. PLoS ONE 6, e21714 (2011).
227. Bourne, C., Mackay, C. E. & Holmes, E. A. The neural basis of flashback formation: the impact of viewing trauma. Psychol. Med. 43, 1521–1532 (2013).
228. McGaugh, J. L. The Amygdala Modulates the Consolidation of Memories of Emotionally Arousing Experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).
229. Sharp, B. M. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl. Psychiatry 7, e1194–e1194 (2017).
230. Ibrahim, H. & Hassan, C. Q. Post-traumatic Stress Disorder Symptoms Resulting from Torture and Other Traumatic Events among Syrian Kurdish Refugees in Kurdistan Region, Iraq. Front. Psychol. 8, (2017).
231. Bremner, J. D., Elzinga, B., Schmahl, C. & Vermetten, E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. in Progress in Brain Research vol. 167 171–186 (Elsevier, 2007).
232. Liu, J., Wei, W., Kuang, H., Zhao, F. & Tsien, J. Z. Changes in Heart Rate Variability Are Associated with Expression of Short-Term and Long-Term Contextual and Cued Fear Memories. PLoS ONE 8, e63590 (2013).
233. Khalaf, O. et al. Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science 360, 1239–1242 (2018).
234. Khalaf, O. & Gräff, J. Reactivation of Recall-Induced Neurons in the Infralimbic Cortex and the Basolateral Amygdala After Remote Fear Memory Attenuation. Front. Mol. Neurosci. 12, 70 (2019).
235. Silva, B. A., Burns, A. M. & Gräff, J. A cFos activation map of remote fear memory attenuation. Psychopharmacology (Berl.) 236, 369–381 (2019).
236. Monfils, M.-H., Cowansage, K. K., Klann, E. & LeDoux, J. E. Extinction-Reconsolidation Boundaries: Key to Persistent Attenuation of Fear Memories. Science 324, 951–955 (2009).
237. Alberini, C. M. The Role of Reconsolidation and the Dynamic Process of Long-Term Memory Formation and Storage. Front. Behav. Neurosci. 5, (2011).
238. Dudai, Y. The Neurobiology of Consolidations, Or, How Stable is the Engram? Annu. Rev. Psychol. 55, 51–86 (2004).
239. Milekic, M. H. & Alberini, C. M. Temporally Graded Requirement for Protein Synthesis following Memory Reactivation. Neuron 36, 521–525 (2002).
240. Sayed, S., Iacoviello, B. M. & Charney, D. S. Risk Factors for the Development of Psychopathology Following Trauma. Curr. Psychiatry Rep. 17, 70 (2015).
241. Rau, V., DeCola, J. P. & Fanselow, M. S. Stress-induced enhancement of fear learning: An animal model of posttraumatic stress disorder. Neurosci. Biobehav. Rev. 29, 1207–1223 (2005).
242. Perusini, J. N. et al. Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress. Neuropsychopharmacology 41, 45–57 (2016).
243. Godsil, B. P. & Fanselow, M. S. Light stimulus change evokes an activity response in the rat. Anim. Learn. Behav. 32, 299–310 (2004).
244. Cordero, M. I., Venero, C., Kruyt, N. D. & Sandi, C. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Horm. Behav. 44, 338–345 (2003).
245. Shors, T. J. Acute Stress Rapidly and Persistently Enhances Memory Formation in the Male Rat. Neurobiol. Learn. Mem. 75, 10–29 (2001).
246. Ozawa, M. et al. Experience-dependent resonance in amygdalo-cortical circuits supports fear memory retrieval following extinction. Nat. Commun. 11, 4358 (2020).
247. Meyer, H. C. et al. Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proc. Natl. Acad. Sci. 116, 26970–26979 (2019).
248. Peters, J., Dieppa-Perea, L. M., Melendez, L. M. & Quirk, G. J. Induction of Fear Extinction with Hippocampal-Infralimbic BDNF. Science 328, 1288–1290 (2010).
249. Marek, R. et al. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat. Neurosci. 21, 384–392 (2018).
250. Yang, Y. & Wang, J.-Z. From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Front. Neural Circuits 11, 86 (2017).
251. Pi, G. et al. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat. Commun. 11, 183 (2020).
252. Likhtik, E., Stujenske, J. M., A Topiwala, M., Harris, A. Z. & Gordon, J. A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014).
253. Feng, D. et al. FGF2 alleviates PTSD symptoms in rats by restoring GLAST function in astrocytes via the JAK/STAT pathway. Eur. Neuropsychopharmacol. 25, 1287–1299 (2015).
254. Clawson, B. C. et al. Causal role for sleep-dependent reactivation of learning-activated sensory ensembles for fear memory consolidation. Nat. Commun. 12, 1200 (2021).
255. Latchoumane, C.-F. V., Ngo, H.-V. V., Born, J. & Shin, H.-S. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. Neuron 95, 424-435.e6 (2017).
256. Hutchison, I. C. & Rathore, S. The role of REM sleep theta activity in emotional memory. Front. Psychol. 6, (2015).
257. Liberzon, López, Flagel, Vázquez, & Young. Differential Regulation of Hippocampal Glucocorticoid Receptors mRNA and Fast Feedback: Relevance to Post‐Traumatic Stress Disorder. J. Neuroendocrinol. 11, 11–17 (1999).
258. Lesting, J. et al. Directional Theta Coherence in Prefrontal Cortical to Amygdalo-Hippocampal Pathways Signals Fear Extinction. PLoS ONE 8, e77707 (2013).
259. Jackson, M. E. & Moghaddam, B. Distinct patterns of plasticity in prefrontal cortex neurons that encode slow and fast responses to stress. Eur. J. Neurosci. 24, 1702–1710 (2006).
260. Bunting, K. M., Nalloor, R. I. & Vazdarjanova, A. Influence of Isoflurane on Immediate-Early Gene Expression. Front. Behav. Neurosci. 9, (2016).
261. Dos Santos Corrêa, M. et al. Relationship between footshock intensity, post-training corticosterone release and contextual fear memory specificity over time. Psychoneuroendocrinology 110, 104447 (2019).
262. Bos, M. G. N., Jacobs Van Goethem, T. H., Beckers, T. & Kindt, M. Cortisol response mediates the effect of post-reactivation stress exposure on contextualization of emotional memories. Psychoneuroendocrinology 50, 72–84 (2014).
263. Cai, W.-H., Blundell, J., Han, J., Greene, R. W. & Powell, C. M. Postreactivation Glucocorticoids Impair Recall of Established Fear Memory. J. Neurosci. 26, 9560–9566 (2006).
264. Fanselow, M. S. From contextual fear to a dynamic view of memory systems. Trends Cogn. Sci. 14, 7–15 (2010).
265. Seidenbecher, T., Laxmi, T. R., Stork, O. & Pape, H.-C. Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval. Science 301, 846–850 (2003).
266. Giustino, T. F. & Maren, S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front. Behav. Neurosci. 9, (2015).
267. Gu, Y. et al. A brainstem-central amygdala circuit underlies defensive responses to learned threats. Mol. Psychiatry 25, 640–654 (2020).
268. Aston-Jones, G. et al. Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. in Progress in Brain Research vol. 88 47–75 (Elsevier, 1991).
269. Lee, H. S., Kim, M.-A., Valentino, R. J. & Waterhouse, B. D. Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Res. 963, 57–71 (2003).
270. Marshall, L., Helgadóttir, H., Mölle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).
271. Steriade, M. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137, 1087–1106 (2006).
272. Varela, C., Kumar, S., Yang, J. Y. & Wilson, M. A. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct. Funct. 219, 911–929 (2014).
273. Seibt, J. et al. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat. Commun. 8, 684 (2017).
274. Van Der Heijden, A. C. et al. Sleep spindle dynamics suggest over-consolidation in post-traumatic stress disorder. Sleep 45, zsac139 (2022).
275. Spannuth, B. M. et al. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle. Neuroscience 179, 104–119 (2011).
276. López-Terrones, E. et al. Differential Modulation of Dorsal Raphe Serotonergic Activity in Rat Brain by the Infralimbic and Prelimbic Cortices. Int. J. Mol. Sci. 24, 4891 (2023).
277. Kim, W. B. & Cho, J.-H. Encoding of contextual fear memory in hippocampal–amygdala circuit. Nat. Commun. 11, 1382 (2020).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90533-
dc.description.abstract壓力廣泛影響社會,其影響層面包含許多人的生理及心理健康。嚴重的創傷可能增加罹患心理疾病的機會,例如創傷後壓力症候群(post-traumatic stress disorder,PTSD)。目前已有許多動物模式被用於釐清PTSD的機制。然而,不同模型所產生的壓力表徵各有不同。因此,本篇論文中,我們採用不可迴避的足部電刺激壓力(inescapable footshock stress,IFS)作為急性壓力模型;同時建立多次延長壓力(multiple prolonged stress,MPS)做為慢性嚙齒類動物壓力模型。本研究旨在探討兩個議題:IFS誘發神經胜肽分泌變化所引起的睡眠干擾,以及MPS引起的延長類PTSD行為症狀。
過去研究已知IFS會減少快速動眼期(rapid eye movement,REM)睡眠,但其機制尚未明朗。研究表明,起源於側下丘腦區(lateral hypothalamic area,,LHA)的神經肽下丘泌素(hypocretin,hcrt)調節壓力反應及影響REM睡眠。因此,此實驗研究評估大鼠經IFS刺激後,LHA中下丘泌素神經元(hypocretinergic,hcrt-ergic)投射至REM抑制(REM-off)核區中的藍斑核(locus coeruleus,LC)和背側縫核(dorsal raphe nucleus,DRN)的情形以及對睡眠的影響。我們首先發現LHA中的下丘泌素神經元活化,會造成神經肽下丘泌素過度釋放,並傳遞至LC、DRN、腦幹、視丘及杏仁核中。在IFS前給予非選擇性下丘泌素受體拮抗劑(dual hcrt receptor antagonist)TCS1102後,阻斷LC和DRN核區因下丘泌素而活化,可以扭轉REM睡眠減少。此外,抑制LC和DRN的下丘泌素受體還能恢復因IFS而造成的非快速動眼期(non-rapid eye movement,NREM)睡眠中delta波強度的下降,此變化顯示此二腦區的下丘泌素受體阻斷,改善IFS後的睡眠品質。然而,清醒時的theta波強度及行為試驗結果顯示下丘泌素投射至LC和DRN對於焦慮的調節能力有限。綜上所述,我們的結果說明了IFS引起的REM睡眠抑制和NREM睡眠品質下降,是由於LC和DRN接收的下丘泌素過度分泌所致。
截至目前,單次急性壓力刺激普遍應用嚙齒類壓力實驗,而複合式威脅的多次壓力刺激則較少被研究與討論。因此,我們建構了誘導時長為七天的MPS壓力模型。藉由改良原先單一長期壓力(single-prolonged stress,SPS)模型,我們增加重複性、提高刺激強度與不可預期性,產生長期慢性刺激與進而誘導類PTSD症狀。在MPS模型中,我們延長了原先的單一次刺激至連續七天,其內容包含:2小時行為限制、20分鐘強迫游泳、麻醉。同時,結合四次安排於奇數實驗日的IFS作為主要壓力源。雖然除了足部電擊外,每日大鼠接收到的壓力源皆為相同,但每個實驗日皆隨機安排壓力源順序,以增加MPS壓力的不可預期性。本篇研究中,我們持續觀察類PTSD症狀六週以評估長期壓力影響狀況,包含凍結行為、皮質醇表現量、神經交互作用、焦慮行為及睡眠變化。我們的結果顯示,MPS造成的恐懼記憶會持續保留至六週。前額葉皮質區(prefrontal cortex,PFC)、腹側海馬迴(ventral hippocampus,vHPC)、基底外側杏仁核(basolateral amygdala,BLA)中的theta波區域強度及交互連貫性皆因MPS而增加,並向以恐懼固化為主導的方向傳遞訊號。焦慮行為也因長期恐懼記憶回溯後而增加延長。雖然MPS及恐懼記憶回溯會導致REM睡眠減少,但結果也同時顯示強化的theta腦波及睡眠紡錘分別在REM及NREM睡眠時出現,藉此鞏固恐懼記憶。概括而言,以上延長的遠程恐懼記憶、腦核區交互作用、焦慮及睡眠變異之結果皆支持MPS大鼠模型的長期影響。
綜合上述兩個研究,我們的實驗結果闡明IFS和MPS在壓力後對大鼠的影響。不可預測的壓力,由於下丘泌素神經元過度活化,因而向REM-off核區投射大量下丘泌素,進而降低REM睡眠。另外,壓力重複性和強度通過的增加造成清醒期間和睡眠期間的核區聯繫提升,進而延長了行為異常。
zh_TW
dc.description.abstractStress is a widespread society issue that affects a considerable number of people and causes abnormalities in their physiology and psychology. A severe traumatic incident may increase the possibility of developing a serious syndrome, such as post-traumatic stress disorder (PTSD). Numerous animal models have been established to clarify the mechanism of PTSD; however, the generated symptoms vary due to diverse manipulations. Thus, in this dissertation, the acute and chronic rodent stress models, the inescapable footshock stress (IFS) and multiple prolonged stress (MPS), were determined and assessed, respectively. Two issues have been investigated: the sleep disruption caused by the IFS-induced neuropeptide and the MPS-derived extended PTSD-like symptoms.

IFS stimulation has been found to suppress rapid eye movement (REM) sleep, while the underlying mechanism remains unclear. Studies indicate that the neuropeptide hypocretin (hcrt) released from the lateral hypothalamic area (LHA) mediates stress response and REM sleep. Therefore, the present research elucidated the involvement of hypocretinergic (hcrt-ergic) projection from LHA to REM-off nuclei, locus coeruleus (LC) and dorsal raphe nucleus (DRN), in the IFS-induced sleep alterations. The results first illustrated that the hcrt-ergic neurons were activated in LHA and overexpressed hcrt in LC, DRN, thalamus, and amygdala. Blocking the LC and DRN regions by administrating TCS1102, a dual hcrt-receptor (hcrtR) antagonist, before IFS reversed the REM sleep reduction. Moreover, inhibiting the LC and DRN hcrtRs also improved the sleep quality after IFS by recovering the decreased intensity of non-rapid eye movement (NREM) sleep delta rhythm. However, the hcrt projections to LC and DRN have a limited effect on innate anxiety, as examined by waking theta powers and behavioral tasks. Overall, the results demonstrated that the IFS-induced REM sleep suppression and impairment in NREM sleep quality were governed by the overexpression of hcrt from LHA to the LC and DRN.

Single-shock acute stressors are commonly applied in rodent models, whereas composite life-threatening multiple-shock stressors have rarely been discussed. Therefore, a seven-day MPS protocol was constructed to initiate long-term chronic PTSD-like symptoms by modifying the repetition, intensity, and uncontrollable from the single-prolonged stress (SPS) model. The original single-day manipulation, consisting of 2 hours of restraint, 20 minutes of force swimming, and anesthesia, was extended over seven continuous days. Additionally, four instances of IFS stimulation (paired with contextual and cued tones) were administered on the odd days as the main stressor. Furthermore, to increase the unpredictability of stress, four different kinds of stressors were randomly administrated on each stress acquisition day.

The PTSD-like symptoms were observed and monitored for six weeks to determine the remote stress effects, including freezing behavior, corticosterone levels, neuronal connectivity, anxiety behavior, and sleep alterations. The results showed that the MPS-induced fear memory persisted for six weeks. Increased theta oscillation power and coherency were observed in the prefrontal cortex (PFC), ventral hippocampus (vHPC), and basolateral amygdala (BLA), with the direction of these transitions predominantly favoring fear consolidation after MPS stimulation. Anxiety behavior also extended after remote fear memory retrieval.

Significant REM sleep disruption was observed after MPS and fear memory retrieval, but with strengthened theta oscillation and sleep spindle during REM and NREM sleep, contributing to fear memory consolidation. The results of the prolonged remote fear memory, brain connectivity, anxiety, and sleep variations supported the long-lasting effect of the MPS rat model.

In summary, the above results have demonstrated the post-stress impacts from both the IFS and MPS rat models. Unpredictable stress decreases REM sleep due to the hyper-activation of hcrt-ergic neuron projections from LHA to the REM-off nuclei. Furthermore, enhanced stress repetition and intensity prolonged the behavioral abnormalities by increasing nuclei connectivity during waking and sleep.
Stress is a widespread society issue that affects a considerable number of people and causes abnormalities in their physiology and psychology. A severe traumatic incident may increase the possibility of developing a serious syndrome, such as post-traumatic stress disorder (PTSD). Numerous animal models have been established to clarify the mechanism of PTSD; however, the generated symptoms vary due to diverse manipulations. Thus, in this dissertation, the acute and chronic rodent stress models, the inescapable footshock stress (IFS) and multiple prolonged stress (MPS), were determined and assessed, respectively. Two issues have been investigated: the sleep disruption caused by the IFS-induced neuropeptide and the MPS-derived extended PTSD-like symptoms.

IFS stimulation has been found to suppress rapid eye movement (REM) sleep, while the underlying mechanism remains unclear. Studies indicate that the neuropeptide hypocretin (hcrt) released from the lateral hypothalamic area (LHA) mediates stress response and REM sleep. Therefore, the present research elucidated the involvement of hypocretinergic (hcrt-ergic) projection from LHA to REM-off nuclei, locus coeruleus (LC) and dorsal raphe nucleus (DRN), in the IFS-induced sleep alterations. The results first illustrated that the hcrt-ergic neurons were activated in LHA and overexpressed hcrt in LC, DRN, thalamus, and amygdala. Blocking the LC and DRN regions by administrating TCS1102, a dual hcrt-receptor (hcrtR) antagonist, before IFS reversed the REM sleep reduction. Moreover, inhibiting the LC and DRN hcrtRs also improved the sleep quality after IFS by recovering the decreased intensity of non-rapid eye movement (NREM) sleep delta rhythm. However, the hcrt projections to LC and DRN have a limited effect on innate anxiety, as examined by waking theta powers and behavioral tasks. Overall, the results demonstrated that the IFS-induced REM sleep suppression and impairment in NREM sleep quality were governed by the overexpression of hcrt from LHA to the LC and DRN.

Single-shock acute stressors are commonly applied in rodent models, whereas composite life-threatening multiple-shock stressors have rarely been discussed. Therefore, a seven-day MPS protocol was constructed to initiate long-term chronic PTSD-like symptoms by modifying the repetition, intensity, and uncontrollable from the single-prolonged stress (SPS) model. The original single-day manipulation, consisting of 2 hours of restraint, 20 minutes of force swimming, and anesthesia, was extended over seven continuous days. Additionally, four instances of IFS stimulation (paired with contextual and cued tones) were administered on the odd days as the main stressor. Furthermore, to increase the unpredictability of stress, four different kinds of stressors were randomly administrated on each stress acquisition day.

The PTSD-like symptoms were observed and monitored for six weeks to determine the remote stress effects, including freezing behavior, corticosterone levels, neuronal connectivity, anxiety behavior, and sleep alterations. The results showed that the MPS-induced fear memory persisted for six weeks. Increased theta oscillation power and coherency were observed in the prefrontal cortex (PFC), ventral hippocampus (vHPC), and basolateral amygdala (BLA), with the direction of these transitions predominantly favoring fear consolidation after MPS stimulation. Anxiety behavior also extended after remote fear memory retrieval.

Significant REM sleep disruption was observed after MPS and fear memory retrieval, but with strengthened theta oscillation and sleep spindle during REM and NREM sleep, contributing to fear memory consolidation. The results of the prolonged remote fear memory, brain connectivity, anxiety, and sleep variations supported the long-lasting effect of the MPS rat model.

In summary, the above results have demonstrated the post-stress impacts from both the IFS and MPS rat models. Unpredictable stress decreases REM sleep due to the hyper-activation of hcrt-ergic neuron projections from LHA to the REM-off nuclei. Furthermore, enhanced stress repetition and intensity prolonged the behavioral abnormalities by increasing nuclei connectivity during waking and sleep.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:31:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:31:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTABLE OF CONTENTS
口試委員會審定書 i
聲明 ii
誌謝 iii
中文摘要 v
ABSTRACT viii
TABLE OF CONTENTS xii
LIST OF FIGURES xv
LIST OF TABLES xviii
LIST OF ABBREVIATIONS xix
CHAPTER 1 1
1.1 PTSD-like models in rodent 4
1.1.1 Stress stimulation-induces fear memory consolidation in neuronal circuits………. 7
1.1.2 Stress stimulation activates neuroendocrine system and neurotransmitters expression 13
1.1.3 Stress manipulation induces anxiety by increase of corticosterone and hypocretin expression 16
1.1.4 Fear memory consolidation during sleep 19
1.2 Inescapable footschok stress-induced hcrt expression causes sleep disruption and anxiety behavior 22
1.3 Multiple prolonged stress extends fear memory and behavioral abnormalities 23
1.4 Specific aims 25
CHAPTER 2 26
2.1 Abstract 26
2.2 Introduction 28
2.3 Material and methods 32
2.4 Results 45
2.4.1 IFS-induced REM sleep alteration 45
2.4.2 Hcrt in the DRN and LC modulated IFS-induced REM sleep alteration 46
2.4.3 Alterations of sleep architectures 48
2.4.4 Hcrt in the DRN regulated IFS-induced SWA alterations during NREM sleep 50
2.4.5 Hcrt involved in the IFS-increased theta oscillation during wakefulness 51
2.4.6 IFS Increased stress response and anxiety-like behavior 52
2.4.7 IFS increased hcrt neuronal activity and hcrt expression in the LHA……… 54
2.4.8 IFS elevated the hcrt concentrations in the hypothalamus, brainstem, amygdala, and thalamus 55
2.5 Discussion and conclusions 92
CHAPTER 3 99
3.1 Abstract 99
3.2 Introduction 100
3.3 Material and methods 103
3.4 Results 119
3.5 Discussion and conclusions 192
CHAPTER 4 203
REFERENCES 223
-
dc.language.isoen-
dc.title創傷後壓力症候群模型引發嚙齒動物異常神經傳遞所導致焦慮行為及睡眠失調之探討zh_TW
dc.titleEvaluate the aberrant neuronal transmission on post-traumatic stress disorder rodent models-induced anxiety and sleep disruptionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee詹東榮;蕭逸澤;尹珮璐;李信謙zh_TW
dc.contributor.oralexamcommitteeTong-Rong Jan;Yi-Tse Hsiao;Pei-Lu Yi;Hsin-Chien Leeen
dc.subject.keyword壓力,創傷後壓力症候群,下丘泌素,側下丘腦區,藍斑核,背側縫核,睡眠,恐懼記憶,前額葉皮質區-腹側海馬迴-基底外側杏仁核迴路,theta波,焦慮,zh_TW
dc.subject.keywordstress,post-traumatic stress disorder,hypocretin,lateral hypothalamic area,locus coeruleus,dorsal raphe nucleus,sleep,fear memory,prefrontal cortex-basolateral amygdala-ventral hippocampus pathway,theta oscillation,anxiety,en
dc.relation.page262-
dc.identifier.doi10.6342/NTU202303254-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
18.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved