請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90531完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志鴻 | zh_TW |
| dc.contributor.advisor | Chih-Hung Chen | en |
| dc.contributor.author | 謝竺軒 | zh_TW |
| dc.contributor.author | Jhu-Syuan Sie | en |
| dc.date.accessioned | 2023-10-03T16:30:31Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] M. M. Rahman, A. O. Oni, E. Gemechu, and A. Kumar, “Assessment of energy storage technologies: A review,” Energy Conversion and Management, vol. 223, p. 113 295, 2020.
[2] M. Götz, J. Lefebvre, F. Mörs, et al., “Renewable Power-to-Gas: A technological and economic review,” Renewable energy, vol. 85, pp. 1371–1390, 2016. [3] J. I. Pérez-Dı́az, M. Chazarra, J. Garcı́a-González, G. Cavazzini, and A. Stoppato,“Trends and challenges in the operation of pumped-storage hydropower plants,”Renewable and Sustainable Energy Reviews, vol. 44, pp. 767–784, 2015. [4] A. Dehghani-Sanij, E. Tharumalingam, M. Dusseault, and R. Fraser, “Study of energy storage systems and environmental challenges of batteries,” Renewable and Sustainable Energy Reviews, vol. 104, pp. 192–208, 2019. [5] J. Moore and B. Shabani, “A critical study of stationary energy storage policies in Australia in an international context: The role of hydrogen and battery technologies,”Energies, vol. 9, no. 9, p. 674, 2016. [6] B. Liu, J.-G. Zhang, and W. Xu, “Advancing lithium metal batteries,” Joule, vol. 2, no. 5, pp. 833–845, 2018. [7] Q. Li, S. Tan, L. Li, Y. Lu, and Y. He, “Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries,” Science advances, vol. 3, no. 7, e1701246, 2017. [8] J.-M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” nature, vol. 414, no. 6861, pp. 359–367, 2001. [9] X. Shan, Y. Zhong, L. Zhang, et al., “A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives,” The Journal of Physical Chemistry C, vol. 125, no. 35, pp. 19 060–19 080, 2021. [10] H. Ye, Y. Zhang, Y.-X. Yin, F.-F. Cao, and Y.-G. Guo, “An outlook on low-volumechange lithium metal anodes for long-life batteries,” ACS Central Science, vol. 6, no. 5, pp. 661–671, 2020. [11] W. Xu, J. Wang, F. Ding, et al., “Lithium metal anodes for rechargeable batteries,” Energy & Environmental Science, vol. 7, no. 2, pp. 513–537, 2014. [12] M. S. Ding, K. Xu, and T. R. Jow, “Liquid-solid phase diagrams of binary carbonates for lithium batteries,” Journal of the Electrochemical Society, vol. 147, no. 5, p. 1688, 2000. [13] R. Väli, A. Jänes, and E. Lust, “Vinylene carbonate as co-solvent for low-temperature mixed electrolyte based Supercapacitors,” Journal of The Electrochemical Society, vol. 163, no. 6, A851, 2016. [14] N. Nanbu, K. Suzuki, N. Yagi, et al., “Use of fluoroethylene carbonate as solvent for electric double-layer capacitors,” Electrochemistry, vol. 75, no. 8, pp. 607–610, 2007. [15] A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, and M. R. Palacin, “In search of an optimized electrolyte for Na-ion batteries,” Energy & Environmental Science, vol. 5, no. 9, pp. 8572–8583, 2012. [16] K. Xu, “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries,”Chemical reviews, vol. 104, no. 10, pp. 4303–4418, 2004. [17] M. Wang, L. Huai, G. Hu, et al., “Effect of LiFSI concentrations to form thicknessand modulus-controlled SEI layers on lithium metal anodes,” The Journal of Physical Chemistry C, vol. 122, no. 18, pp. 9825–9834, 2018. [18] C. Shen, G. Hu, L.-Z. Cheong, S. Huang, J.-G. Zhang, and D. Wang, “Direct observation of the growth of lithium dendrites on graphite anodes by operando ECAFM,”Small Methods, vol. 2, no. 2, p. 1 700 298, 2018. [19] F. T. Krauss, I. Pantenburg, and B. Roling, “Transport of Ions, Molecules, and Electrons across the Solid Electrolyte Interphase: What Is Our Current Level of Understanding?”Advanced Materials Interfaces, vol. 9, no. 8, p. 2 101 891, 2022. [20] Q. Shi, Y. Zhong, M. Wu, H. Wang, and H. Wang, “High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes,” Proceedings of the National Academy of Sciences, vol. 115, no. 22, pp. 5676–5680, 2018. [21] Y. Zhang, Y. Zhong, S. Liang, B. Wang, X. Chen, and H. Wang, “Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases,” ACS Materials Letters, vol. 1, no. 2, pp. 254–259, 2019. [22] D. Lau, W. Jian, Z. Yu, and D. Hui, “Nano-engineering of construction materials using molecular dynamics simulations: Prospects and challenges,” Composites Part B: Engineering, vol. 143, pp. 282–291, 2018. [23] D. Wolf, V. Yamakov, S. Phillpot, A. Mukherjee, and H. Gleiter, “Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?”Acta Materialia, vol. 53, no. 1, pp. 1–40, 2005. [24] Y. Chong, Q. Liu, Z. Wang, et al., “Solubility, MD simulation, thermodynamic properties and solvent effect of perphenazine (Form I) in eleven neat organic solvents ranged from 278.15 K to 318.15 K,” Journal of Molecular Liquids, vol. 348, p. 118 184, 2022. [25] M. Stan, “Discovery and design of nuclear fuels,” Materials Today, vol. 12, no. 11, pp. 20–28, 2009. [26] A. C. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF: a reactive force field for hydrocarbons,” The Journal of Physical Chemistry A, vol. 105, no. 41, pp. 9396–9409, 2001. [27] M. M. Islam, V. S. Bryantsev, and A. C. Van Duin, “ReaxFF reactive force field simulations on the influence of teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium-sulfur batteries,” Journal of the Electrochemical Society, vol. 161, no. 8, E3009, 2014. [28] A. P. Thompson, H. M. Aktulga, R. Berger, et al., “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comp. Phys. Comm., vol. 271, p. 108 171, 2022. [29] L. Martı́nez, R. Andrade, E. G. Birgin, and J. M. Martı́nez, “PACKMOL: A package for building initial configurations for molecular dynamics simulations,” Journal of computational chemistry, vol. 30, no. 13, pp. 2157–2164, 2009. [30] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modelling and simulation in materials science and engineering, vol. 18, no. 1, p. 015 012, 2009. [31] M. M. Islam, A. Ostadhossein, O. Borodin, et al., “ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials,” Physical Chemistry Chemical Physics, vol. 17, no. 5, pp. 3383–3393, 2015. [32] J. Zhang, R. Wang, X. Yang, et al., “Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy,”Nano letters, vol. 12, no. 4, pp. 2153–2157, 2012. [33] N. Weadock, N. Varongchayakul, J. Wan, S. Lee, J. Seog, and L. Hu, “Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy,” Nano Energy, vol. 2, no. 5, pp. 713–719, 2013. [34] A. S. Alaboodi and Z. Hussain, “Finite element modeling of nano-indentation technique to characterize thin film coatings,” Journal of King Saud University-Engineering Sciences, vol. 31, no. 1, pp. 61–69, 2019. [35] J. Li, J. Guo, H. Luo, et al., “Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations,” Applied Surface Science, vol. 364, pp. 190–200, 2016. [36] Y. Zhao, X. Peng, T. Fu, R. Sun, C. Feng, and Z. Wang, “MD simulation of nanoindentation on (001) and (111) surfaces of Ag–Ni multilayers,” Physica E: Lowdimensional Systems and Nanostructures, vol. 74, pp. 481–488, 2015. [37] L. Ladani, E. Harvey, S. Choudhury, and C. Taylor, “Effect of varying test parameters on elastic–plastic properties extracted by nanoindentation tests,” Experimental Mechanics, vol. 53, pp. 1299–1309, 2013. [38] X. Zhang, R. Kostecki, T. J. Richardson, J. K. Pugh, and P. N. Ross, “Electrochemical and infrared studies of the reduction of organic carbonates,” Journal of The Electrochemical Society, vol. 148, no. 12, A1341, 2001. [39] S. A. Delp, O. Borodin, M. Olguin, C. G. Eisner, J. L. Allen, and T. R. Jow, “Importance of reduction and oxidation stability of high voltage electrolytes and additives,”Electrochimica Acta, vol. 209, pp. 498–510, 2016. [40] Y. Liu, D. Lin, Y. Li, et al., “Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode,” Nature communications, vol. 9, no. 1, pp. 1–10, 2018. [41] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, “Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries,” npj Computational Materials, vol. 4, no. 1, p. 15, 2018. [42] H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, and M. Yamachi,“Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging,” Journal of Power Sources, vol. 68, no. 2, pp. 311–315, 1997. [43] K. N. Shitaw, S.-C. Yang, S.-K. Jiang, et al., “Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode-Free Li-Metal Battery,” Advanced Functional Materials, vol. 31, no. 6, p. 2 006 951, 2021. [44] B. S. Parimalam, A. D. MacIntosh, R. Kadam, and B. L. Lucht, “Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6,” The Journal of Physical Chemistry C, vol. 121, no. 41, pp. 22 733–22 738, 2017. [45] L.-P. Hou, N. Yao, J. Xie, et al., “Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries,” Angewandte Chemie International Edition, vol. 61, no. 20, e202201406, 2022. [46] K. Nishikawa, Y. Fukunaka, T. Sakka, Y. Ogata, and J. Selman, “Measurement of concentration profiles during electrodeposition of Li metal from LiPF6-PC electrolyte solution: The role of SEI dynamics,” Journal of The Electrochemical Society, vol. 154, no. 10, A943, 2007. [47] A. Stukowski, “Computational analysis methods in atomistic modeling of crystals,”Jom, vol. 66, pp. 399–407, 2014. [48] K. K. Gupta, L. Roy, and S. Dey, “Hybrid machine-learning-assisted stochastic nano-indentation behaviour of twisted bilayer graphene,” Journal of Physics and Chemistry of Solids, vol. 167, p. 110 711, 2022. [49] S. Goel, G. Cross, A. Stukowski, E. Gamsjäger, B. Beake, and A. Agrawal, “Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten,” Computational Materials Science, vol. 152, pp. 196–210, 2018. [50] Z. Lu, A. Chernatynskiy, M. J. Noordhoek, S. B. Sinnott, and S. R. Phillpot, “Nanoindentation of Zr by molecular dynamics simulation,” Journal of Nuclear Materials, vol. 467, pp. 742–757, 2015. [51] W.-W. Wang, Y. Gu, H. Yan, et al., “Evaluating solid-electrolyte interphases for lithium and lithium-free anodes from nanoindentation features,” Chem, vol. 6, no. 10, pp. 2728–2745, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90531 | - |
| dc.description.abstract | 鋰金屬電池因為擁有較大的能量密度,所以有望在未來能取代鋰離子電池成為攜帶式裝置中的儲能方式。然而,在鋰金屬電池正式取代鋰離子電池之前仍然有許多問題等待克服,例如:負極的體積變化與枝晶的生長等,其中,當負極體積發生變化時會使固態電解質界面(solid electrolyte interphase, SEI)產生形變最終造成SEI破裂,進而引起電解液的過度消耗與枝晶的生長,因此SEI是否擁有足夠的機械強度以抵抗負極體積的變化是鋰金屬電池能否取代鋰離子電池的關卡之一。
SEI為電解液在鋰金屬負極表面發生還原反應形成的鈍化層,使用不同的電解液會使其組成成分與結構改變,進而影響到SEI的機械性質,因此本研究選用碳酸乙烯酯(ethylene carbonate, EC)與碳酸二乙酯(diethyl carbonate, DEC)作為溶劑;LiPF6作為鋰鹽;並選用能抑制枝晶生長的功能性鋰鹽LiNO3作為添加劑。最終,我們以EC與DEC作為溶劑,分別探討添加LiPF6與LiNO3對於SEI組成造成的變化,同時使用拉伸試驗與奈米壓痕試驗(nanoindentation)檢測不同配方對於SEI機械性質的影響。 研究結果表明,在以EC與DEC作為溶劑的電解液配方中添加LiPF6或LiNO3會使得生成的SEI變薄,同時也會使其孔洞增加。為了檢測SEI之機械性質,我們使用拉伸試驗與奈米壓痕試驗對其進行檢測,在拉伸試驗與奈米壓痕試驗的結果中顯示,當在電解液裡添加LiPF6與LiNO3時均會使SEI之機械強度下降。為了對SEI機械性質有更深入的研究,本團隊在未來將持續優化奈米壓痕試驗之進行方式,以提供不同的SEI之機械性質檢測方法,並期望能加速鋰金屬電池商業化的過程。 | zh_TW |
| dc.description.abstract | Lithium metal batteries have a higher energy density, and are expected to replace lithium-ion batteries as the energy storage device in the future. However, before lithium metal batteries can become a viable alternative, there are still many challenges to overcome, such as volume changes of anode and dendrite growth. The volume changes of the anode can cause deformation on the solid electrolyte interphase (SEI), eventually leading to SEI rupture, excessive consumption of electrolyte, and a decrease in cycle life. Therefore, whether the SEI can resist the volume changes of the anode is one of the main obstacles for lithium metal batteries to replace lithium-ion batteries.
SEI is a passivation layer that forms on the surface of the lithium metal anode through the reduction reaction of the electrolyte. The composition and structure of the SEI can be influenced by the choice of electrolytes. For this study, we choose ethylene carbonate (EC) and diethyl carbonate (DEC) as solvents. LiPF6 is chosen as the lithium salt, while LiNO3 is selected as an additive to inhibit dendrite growth. Our objective is to investigate the effects of LiPF6 and LiNO3 on the composition of the SEI generated from EC and DEC solvents, and to evaluate the mechanical properties of the resulting SEI using tensile testing and nanoindentation. The study indicates that after adding LiPF6 or LiNO3 to the electrolyte, the thickness of SEI decreases. Additionally, we found that adding LiPF6 and LiNO3 to the electrolyte increases the porosity of the SEI. To measure the mechanical performance of the SEI, we use tensile testing and nanoindentation. In the results, the addition of LiPF6 and LiNO3 to the electrolyte causes a decrease in the Young's modulus and toughness of the SEI. In order to gain deeper insights into the mechanical performance of the SEI, we will continue to optimize the methodology of nanoindentation. This will enable the development of diverse approaches to assess the mechanical performance of different SEI. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:30:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:30:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝i
摘要ii Abstract iv 目錄vi 圖目錄viii 表目錄x 第一章緒論1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 鋰金屬電池. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 電解液組成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章研究方法10 2.1 分子動力學. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 ReaxFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 模擬軟體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 電解液系統之分子數量計算. . . . . . . . . . . . . . . . . . . . . . 13 2.5 機械性質檢測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 維里應力. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 奈米壓痕試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第三章系統設置與結果討論17 3.1 固態電解質界面之成分與結構. . . . . . . . . . . . . . . . . . . . . 18 3.1.1 生成設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 成分與結構探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 固態電解質界面之機械性質. . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 拉伸試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 奈米壓痕試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2.1 奈米壓痕試驗之方法比較. . . . . . . . . . . . . . . 33 3.2.2.2 固態電解質界面之奈米壓痕試驗. . . . . . . . . . . 43 第四章結論與未來展望46 4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 參考文獻50 附錄A — 本研究所使用之程式碼56 A.1 生成鋰金屬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A.2 生成電解液系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 A.3 生成SEI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A.4 拉伸試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.5 奈米壓痕試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 拉伸試驗 | zh_TW |
| dc.subject | 奈米壓痕試驗 | zh_TW |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | 鋰金屬電池 | zh_TW |
| dc.subject | 固態電解質介面 | zh_TW |
| dc.subject | 六氟磷酸鋰 | zh_TW |
| dc.subject | 硝酸鋰 | zh_TW |
| dc.subject | Molecular Dynamics | en |
| dc.subject | Lithium Nitrate | en |
| dc.subject | Lithium Hexafluorophosphate | en |
| dc.subject | SEI | en |
| dc.subject | Lithium Metal Battery | en |
| dc.subject | Tensile Testing | en |
| dc.subject | Nanoindentation | en |
| dc.title | 反應分子動力學探討鋰鹽對固態電解質界面機械性質之影響 | zh_TW |
| dc.title | Reactive Molecular Dynamics Study of the Influence of Lithium Salts on the Mechanical Performance of Solid Electrolyte Interphase | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建彰;包淳偉 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Zhang Chen;Chun-Wei Pao | en |
| dc.subject.keyword | 分子動力學,鋰金屬電池,固態電解質介面,六氟磷酸鋰,硝酸鋰,拉伸試驗,奈米壓痕試驗, | zh_TW |
| dc.subject.keyword | Molecular Dynamics,Lithium Metal Battery,SEI,Lithium Hexafluorophosphate,Lithium Nitrate,Tensile Testing,Nanoindentation, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202302713 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2024-08-02 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 19.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
