請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90525
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李家岩 | zh_TW |
dc.contributor.advisor | Chia-Yen Lee | en |
dc.contributor.author | 莊芯瑜 | zh_TW |
dc.contributor.author | Xin-Yu Zhuang | en |
dc.date.accessioned | 2023-10-03T16:28:56Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-21 | - |
dc.identifier.citation | Salary Information for Transportation and Logistics Professionals - Types of Positions" sourced from the 104 Human Resources Bank company website (in Chinese): https://guide.104.com.tw/salary/cat/2011002000?type=catjobs&salary=monthly
Website of Vehicle Energy Consumption Research, Bureau of Energy, Ministry of Economic Affairs, Republic of China. Retrieved from the website of Bureau of Energy, Ministry of Economic Affairs, Republic of China (in Chinese): https://auto.itri.org.tw/iv_general_qry.aspx Yang, C. H. (2022, May 4). Taipei traffic congestion worsens by 1.1 times in 6 years. Retrieved from United Daily News website (in Chinese): https://udn.com/news/story/7323/6285763 Archetti, C., Savelsbergh, M., & Speranza, M.G. (2016). The vehicle routing problem with occasional drivers. European Journal of Operational Research. 254(2): 472–480. https://doi.org/10.1016/j.ejor.2016.03.049 Arslan, A. M., Agatz, N., Kroon, L., & Zuidwijk, R. (2018). Crowdsourced delivery—a dynamic pickup and delivery problem with ad hoc drivers. Transportation Science. 53(1), 222–235. Avriel, M., & Williams, A. C. (1970). The value of information and stochastic programming. Operations Research, 18(5), 947-954. Barr, A., & Wohl, J. (2013). Exclusive: Walmart may get customers to deliver packages to online buyers. REUTERS–Business Week (March). Behrend, M., & Meisel, F. (2018). The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd?. Transportation Research Part B: Methodological, 111, 227-243. Birge, J. R. (1982). The value of the stochastic solution in stochastic linear programs with fixed recourse. Mathematical programming, 24, 314-325. Boysen, N., Emde, S., & Schwerdfeger, S. (2022). Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand. European Journal of Operational Research, 296(2), 539-556. Chen, W., Mes, M., & Schutten, M. (2018). Multi-hop driver-parcel matching problem with time windows. Flexible Services and Manufacturing Journal. 30(3): 517–553. Cortés, C. E., Matamala, M., & Contardo, C. (2010). The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method. European Journal of Operational Research. 200(3): 711–724. Dahle, L., Andersson, H., Christiansen, M., & Speranza, M. G. (2019). The pickup and delivery problem with time windows and occasional drivers. Computers & Operations Research. 109: 122–133. Deutsch, Y., & Golany, B. (2018). A parcel locker network as a solution to the logistics last mile problem. International Journal of Production Research. 56(1–2): 251–261. Di Puglia Pugliese, L., Ferone, D., Festa, P., Guerriero, F., & Macrina, G. (2022). Solution approaches for the vehicle routing problem with occasional drivers and time windows. Optimization Methods and Software. 1–31. dos Santos, A. G., Viana, A., & Pedroso, J. P. (2022). 2-echelon lastmile delivery with lockers and occasional couriers. Transportation Research Part E: Logistics and Transportation Review. 162:102714. Faugère, L., & Montreuil, B. (2020). Smart locker bank design optimization for urban omnichannel logistics: Assessing monolithic vs. Modular configurations. Computers & Industrial Engineering, 139:105544. Gdowska, K., Viana, A., & Pedroso, J. P. (2018). Stochastic last-mile delivery with crowdshipping. Transportation research procedia, 30, 90-100. Guo, X., Jaramillo, Y. J. L., Bloemhof-Ruwaard, J., & Claassen, G. D. H. (2019). On integrating crowdsourced delivery in last-mile logistics: A simulation study to quantify its feasibility. Journal of Cleaner Production. 241:118365. Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L., & Sigismondi, G. (1995). The fleet assignment problem: Solving a large-scale integer program. Mathematical Programming. 70(1): 211–232. Hou, S., Gao, J., & Wang, C. (2022). Optimization Framework for Crowd-Sourced Delivery Services With the Consideration of Shippers’ Acceptance Uncertainties. IEEE Transactions on Intelligent Transportation Systems. Jin, J. G., Lee, D. H., & Hu, H. (2015). Tactical berth and yard template design at container transshipment terminals: A column generation based approach. Transportation Research Part E: Logistics and Transportation Review, 73, 168-184.. Kliewer, N., Mellouli, T., & Suhl, L. (2006). A time–space network based exact optimization model for multi-depot bus scheduling. European Journal of Operational Research. 175(3): 1616–1627. Landa, R. (2015). Thinking creatively in the digital age. Nimble, Blue Ash, Ohio,. Le, T. V., Stathopoulos, A., Van Woensel, T., & Ukkusuri, S. V. (2019). Supply, demand, operations, and management of crowd-shipping services: A review and empirical evidence. Transportation Research Part C: Emerging Technologies, 103:83–103. Lee, Chia-Yen, and Charles, V., 2022. A robust capacity expansion integrating the perspectives of marginal productivity and capacity regret. European Journal of Operational Research, 296 (2), 557-569. Lee, Chia-Yen, and Johnson, A. L., 2014. Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments. European Journal of Operational Research, 232 (3), 537–548. Lin, Y. H., Wang, Y., He, D., & Lee, L. H. (2020). Last-mile delivery: optimal locker location under multinomial logit choice model. Transportation Research Part E: Logistics and Transportation Review, 142:102059. Lyu, G., & Teo, C. P. (2022). Last mile innovation: the case of the locker alliance network. Manufacturing & Service Operations Management. Macrina, G., Di Puglia Pugliese, L., Guerriero, F., & Laganà, D. (2017, September). The vehicle routing problem with occasional drivers and time windows. In International conference on optimization and decision science (pp. 577-587). Springer, Cham. Macrina, G., Pugliese, L. D. P., Guerriero, F., & Laporte, G. (2020). Crowd-shipping with time windows and transshipment nodes. Computers & Operations Research. 113:104806. Madansky, A. (1960). Inequalities for stochastic linear programming problems. Management science, 6(2), 197-204. Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a technique for research and development program evaluation. Operations research, 7(5), 646-669. Masson, R., Lehuédé, F., & Péton, O. (2013). An adaptive large neighborhood search for the pickup and delivery problem with transfers. Transportation Science: 47(3): 344–355. Mitrović-Minić, S., & Laporte, G. (2006). The pickup and delivery problem with time windows and transshipment. INFOR: Information Systems and Operational Research. 44(3): 217–227. Mousavi, K., Bodur, M., & Roorda, M. J. (2022). Stochastic last-mile delivery with crowd-shipping and mobile depots. Transportation Science, 56(3), 612-630. Pitney Bowes, 2022. Pitney Bowes Parcel Shipping Index. Retrieved October 26, https://www.pitneybowes.com/us/shipping-index.html Qi, W., Li, L., Liu, S., & Shen, Z. J. M. (2018). Shared mobility for last-mile delivery: Design, operational prescriptions, and environmental impact. Manufacturing & Service Operations Management. 20(4): 737–751. Rais, A., Alvelos, F., & Carvalho, M. S. (2014). New mixed integer-programming model for the pickup-and-delivery problem with transshipment. European Journal of Operational Research, 235(3): 530–539. Sampaio, A., Savelsbergh, M., Veelenturf, L. P., & Van Woensel, T. (2020). Delivery systems with crowd‐sourced drivers: A pickup and delivery problem with transfers. Networks. 76(2): 232–255. Sampaio, A., Savelsbergh, M., Veelenturf, L., & Van Woensel, T. (2019). Crowd-based city logistics. In Sustainable Transportation and Smart Logistics (pp. 381-400). Elsevier. Savelsbergh, M. W., & Sol, M. (1995). The general pickup and delivery problem. Transportation science, 29(1), 17-29. Savelsbergh, M. W., & Ulmer, M. W. (2022). Challenges and opportunities in crowdsourced delivery planning and operations. 4OR. 1–21. Seghezzi, A., Siragusa, C., & Mangiaracina, R. (2022). Parcel lockers vs. Home delivery: A model to compare last-mile delivery cost in urban and rural areas. International Journal of Physical Distribution & Logistics Management. Song, L., Mao, B., Wu, Z., & Wang, J. (2019). Investigation of home delivery models and logistics services in China. Transportation Research Record, 2673(9): 11–22. Steinzen, I., Gintner, V., Suhl, L., & Kliewer, N. (2010). A time-space network approach for the integrated vehicle-and crew-scheduling problem with multiple depots. Transportation Science, 44(3): 367–382. Ulmer, M. W., & Savelsbergh, M. (2020). Workforce scheduling in the era of crowdsourced delivery. Transportation Science, 54(4), 1113-1133. Vakulenko, Y., Hellström, D., & Hjort, K. (2018). What’s in the parcel locker? Exploring customer value in e-commerce last mile delivery. Journal of Business Research. 88:421–427. van Duin, J. R., Wiegmans, B. W., van Arem, B., & van Amstel, Y. (2020). From home delivery to parcel lockers: A case study in Amsterdam. Transportation Research Procedia. 46:37–44. Voigt, S., & Kuhn, H. (2021). Crowdsourced logistics: The pickup and delivery problem with transshipments and occasional drivers. Networks. Wang X, Kopfer H (2015). Rolling horizon planning for a dynamic collaborative routing problem with full-truckload pickup and delivery requests. Flexible Services and Manufacturing Journal. 27(4): 509–533. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90525 | - |
dc.description.abstract | 因網路購物盛行,上千萬的包裹須在城市中及時被載送至目的地,雖然雇用越多的物流人員能及時將包裹送達目的地,但物流公司須負擔高昂的人事成本,因此遞送成本較低的「眾包運送物流」近年來逐漸興起,此種配送方式為公司支付一些通勤的眾包司機,讓司機利用車內閒置空間在原路途中順道收送貨,減少公司整體的運送成本。
然而交通壅塞與顧客難以在約定時間取包裹,仍讓包裹配送成為城市物流中困難的「最初與最終一哩收送問題」。因此,結合眾包運送物流,本研究提出新型態的收送機制因應此難題:使用「智能櫃」讓顧客在方便的時間與地點取包裹,此外,智能櫃也可作為轉運站,將難以單趟直送的包裹拆成不同階段讓眾包司機接力配送,而每階段的配送皆可使用智能櫃轉運。透過眾包運送的共享效益與智能櫃的方便性與轉運功能,兩者結合的收送機制應可有效解決包裹收送問題。 本研究中,我們建構時空網路模型以解決轉運的司機匹配問題,考慮直送與轉運的可能性,以最小化整體遞送成本匹配合適的司機與包裹。然而,數學模型無法在短時間 (2小時) 內求解大型問題,因此本研究設計滾動式時窗演算法與列生成法加快求解速度,並且我們以數值實驗評估模型和算法的性能,結果顯示加入貪婪的考量部分行生成法能在短時間內求得接近最佳解的表現,我們預期可以有效幫助企業解決實際問題。 在現實生活中,即使眾包司機已經承諾協助運送包裹,也有可能無法滿足收送貨的需求。因此在第六章,我們考慮了眾包司機出現具有隨機性的問題,並設定了眾包司機協助收送貨的機率,以設計非確定性模型來解決此問題。我們使用了Expected Value of Perfect Information、Value of Sample Information以及Sample Average Analysis等方法,來評估非確定性模型的表現。 | zh_TW |
dc.description.abstract | Urban growth and rapid development of e-commerce have led to urban logistics issues, which are failed delivery and delayed delivery. This study proposes an innovative distribution network taking advantage of smart lockers and shared mobility to address these problems. The smart lockers were developed to serve as a transshipping station and to make delivery more sustainable. Then, crowd-sourced drivers and courier systems are designed to relay the parcel delivery. The traditional couriers hired by the shipping company will complete the remaining unqualified shipping tasks for crowds.
In order to minimize delivery costs by matching appropriate drivers with parcels, we developed a time-space network model to address the driver matching problem for parcel transportation, taking direct delivery and transshipment possibilities into consideration. We also designed a rolling horizon and a column-generation approach to solve large-scale mathematical programming problems. It is worth noting that column generation using the greedy concept can quickly identify near-optimal solutions to large-scale problems. This strategy can help businesses deal with practical challenges. Even though crowd-shippers have promised to help with delivery, they may be unable to meet the deadlines. To handle the randomness of crowd-shippers' availability, we constructed a stochastic model in Chapter 6 that includes the probability that they may not show up. To assess the stochastic model's performance, we used the Expected Value of Perfect Information, Value of Sample Information, and Sample Average Analysis. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:28:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:28:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
Acknowledgements ii Abstract iii 摘要 iv List of Contents v List of Figures vii List of Tables viii Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 3 1.3 Research Overview 3 Chapter 2. Literature Review 5 2.1 Crowd-shipping 5 2.2 Smart Lockers Network 7 Chapter 3. Problem Definition and Time-space Network Model 10 3.1 Research Framework 10 3.2 Problem Definition 10 3.3 A Time-space Network Model 15 Chapter 4. Proposed Algorithms 21 4.1 Rolling Horizon Planning 21 4.2 Column Generation 24 4.2.1 Complete CG (Complete CG, CCG) 24 4.2.2 Greedy CG (Greedy CG, GCG) 26 Chapter 5. Computational Analysis 30 5.1 Generation of the Instances 30 5.2 Analysis of Rolling Horizon 31 5.3 Comparison with Chen et al. (2018) 33 5.4 Column Generation 35 Chapter 6. Extension 38 6.1 Mathematical Model 38 6.2 Evaluation of stochastic solutions 41 6.2.1 Expected Value of Perfect Information (EVPI) 42 6.2.2 Value of Sample Information (VSS) 43 6.2.3 Sample Average Analysis (SAA) 43 6.3 Case Study 44 Chapter 7. Conclusion and Future Research 50 References 52 | - |
dc.language.iso | en | - |
dc.title | 共享智能櫃與眾包運輸之都會區轉運網路最佳化 | zh_TW |
dc.title | Transshipment Network Optimization for Shared Smart Locker and Crowd-shipping in Metropolis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 王逸琳 | zh_TW |
dc.contributor.coadvisor | I-Lin Wang | en |
dc.contributor.oralexamcommittee | 孔令傑;洪一薰 | zh_TW |
dc.contributor.oralexamcommittee | Ling-Chieh Kung;I-Hsuan Hong | en |
dc.subject.keyword | 眾包運送,智能櫃,多段司機匹配問題,整數規劃, | zh_TW |
dc.subject.keyword | Crowd-shipping,smart locker,driver matching,integer linear programming, | en |
dc.relation.page | 55 | - |
dc.identifier.doi | 10.6342/NTU202301089 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-06-26 | - |
dc.contributor.author-college | 管理學院 | - |
dc.contributor.author-dept | 資訊管理學系 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 1.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。