Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90521
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇炫榮zh_TW
dc.contributor.advisorHsuan-Jung Suen
dc.contributor.author侯崇毅zh_TW
dc.contributor.authorChung-Yi Houen
dc.date.accessioned2023-10-03T16:27:53Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationS. Sun, A. P. Petropulu and H. V. Poor, "MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges," in IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 98-117, July 2020, doi: 10.1109/MSP.2020.2978507.
S. Sun and Y. D. Zhang, "4D Automotive Radar Sensing for Autonomous Vehicles: A Sparsity-Oriented Approach," in IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 879-891, June 2021, doi: 10.1109/JSTSP.2021.3079626.
J. Li and P. Stoica, "MIMO Radar with Colocated Antennas," in IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106-114, Sept. 2007, doi: 10.1109/MSP.2007.904812.
Rambach, Kilian. "Direction of arrival estimation using a multiple-input-multiple-output radar with applications to automobiles." (2017).
A. Moffet, "Minimum-redundancy linear arrays," in IEEE Transactions on Antennas and Propagation, vol. 16, no. 2, pp. 172-175, March 1968, doi: 10.1109/TAP.1968.1139138.
P. Pal and P. P. Vaidyanathan, "Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom," in IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167-4181, Aug. 2010, doi: 10.1109/TSP.2010.2049264.
P. Pal and P. P. Vaidyanathan, "Coprime sampling and the music algorithm," 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, AZ, USA, 2011, pp. 289-294, doi: 10.1109/DSP-SPE.2011.5739227.
J. Shi, G. Hu, X. Zhang, F. Sun, W. Zheng and Y. Xiao, "Generalized Co-Prime MIMO Radar for DOA Estimation With Enhanced Degrees of Freedom," in IEEE Sensors Journal, vol. 18, no. 3, pp. 1203-1212, 1 Feb.1, 2018, doi: 10.1109/JSEN.2017.2782746.
W. Zheng, X. Zhang and J. Shi, "Sparse Extension Array Geometry for DOA Estimation With Nested MIMO Radar," in IEEE Access, vol. 5, pp. 9580-9586, 2017, doi: 10.1109/ACCESS.2017.2710212.
J. Shi, F. Wen and T. Liu, "Nested MIMO Radar: Coarrays, Tensor Modeling, and Angle Estimation," in IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 573-585, Feb. 2021, doi: 10.1109/TAES.2020.3034012.
Wen, Fangqing, et al. "2D-DOD and 2D-DOA estimation using sparse L-shaped EMVS-MIMO radar." IEEE Transactions on Aerospace and Electronic Systems (2022).
X. Zhang, Z. Zheng, W. -Q. Wang and H. C. So, "Joint DOD and DOA Estimation of Coherent Targets for Coprime MIMO Radar," in IEEE TransactionsonSignalProcessing,vol.71,pp.14081420,2023,doi:10.1109/TSP2023.3267991.
H. Yamada, T. Kato and H. Mori, "2D Virtual Array Techniques for MIMO Radar," 2022 19th European Radar Conference (EuRAD), Milan, Italy, 2022, pp. 381-384, doi: 10.23919/EuRAD54643.2022.9924719.
Li, Zheng, and Xiaofei Zhang. "Monostatic MIMO radar with nested L-shaped array: Configuration design, DOF and DOA estimation." Digital Signal Processing 108 (2021): 102883.
P. Pal and P. P. Vaidyanathan, "Nested Arrays in Two Dimensions, Part II: Application in Two Dimensional Array Processing," in IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4706-4718, Sept. 2012, doi: 10.1109/TSP.2012.2203815.
J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” in Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, Aug. 1969, doi: 10.1109/PROC.1969.7278.
Schmidt, Ralph. "Multiple emitter location and signal parameter estimation." IEEE transactions on antennas and propagation 34.3 (1986): 276-280.
Roy, Richard, and Thomas Kailath. "ESPRIT-estimation of signal parameters via rotational invariance techniques." IEEE Transactions on acoustics, speech, and signal processing 37.7 (1989): 984-995.
Tie-Jun Shan, M. Wax and T. Kailath, "On spatial smoothing for direction-of-arrival estimation of coherent signals," in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 806-811, August 1985, doi: 10.1109/TASSP.1985.1164649.
D. L. Donoho, "Compressed sensing," in IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-1306, April 2006, doi: 10.1109/TIT.2006.871582.
D. Malioutov, M. Cetin and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," in IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010-3022, Aug. 2005, doi: 10.1109/TSP.2005.850882.
Q. Shen, W. Liu, W. Cui and S. Wu, "Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review," in IEEE Access, vol. 4, pp. 8865-8878, 2016, doi: 10.1109/ACCESS.2016.2628869.
E. Crespo Marques, N. Maciel, L. Naviner, H. Cai and J. Yang, "A Review of Sparse Recovery Algorithms," in IEEE Access, vol. 7, pp. 1300-1322, 2019, doi: 10.1109/ACCESS.2018.2886471.
C. F. Caiafa and A. Cichocki, "Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases," in Neural Computation, vol. 25, no. 1, pp. 186-220, Jan. 2013, doi: 10.1162/NECOa00385.
Lu, Liyang, Zhaocheng Wang, and Sheng Chen. "Joint Block-Sparse Recovery Using Simultaneous BOMP/BOLS." arXiv preprint arXiv:2304.03600 (2023).
Shi, Shuli, Yougen Xu, and Zhiwen Liu. "Block sparse representation approach to 2D DOA and polarisation estimation of wideband signals using a sparse vector antenna array." IET Radar, Sonar \& Navigation 14.12 (2020): 1929-1939.
H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed and P. K. Meher, "FPGA Implementation of Orthogonal Matching Pursuit for Compressive Sensing Reconstruction," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, pp. 2209-2220, Oct. 2015, doi: 10.1109/TVLSI.2014.2358716.
J. A. Tropp and A. C. Gilbert, "Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit," in IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007, doi: 10.1109/TIT.2007.909108.
Zhu, Hufei, Wen Chen, and Yanpeng Wu. "Efficient implementations for orthogonal matching pursuit." Electronics 9.9 (2020): 1507.
C. M. Schmid, R. Feger, C. Pfeffer and A. Stelzer, "Motion compensation and efficient array design for TDMA FMCW MIMO radar systems," 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012, pp. 1746-1750, doi: 10.1109/EuCAP.2012.6206605.
J. Bechter, F. Roos and C. Waldschmidt, "Compensation of Motion-Induced Phase Errors in TDM MIMO Radars," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1164-1166, Dec. 2017, doi: 10.1109/LMWC.2017.2751301.
Baral, Ashwin Bhobani, and Murat Torlak. "Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars." IEEE Journal of Selected Topics in Signal Processing 15.4 (2021): 980-995.
Roos, Fabian, et al. "Enhancement of Doppler unambiguity for chirp-sequence modulated TDM-MIMO radars." 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). IEEE, 2018.
Wang, Zhongde. "Fast algorithms for the discrete W transform and for the discrete Fourier transform." IEEE Transactions on Acoustics, Speech, and Signal Processing 32.4 (1984): 803-816.
M. Alaee-Kerahroodi, M. Modarres-Hashemi and M. M. Naghsh, "Designing Sets of Binary Sequences for MIMO Radar Systems," in IEEE Transactions on Signal Processing, vol. 67, no. 13, pp. 3347-3360, 1 July1, 2019, doi: 10.1109/TSP.2019.2914878.
B. Liu, "Orthogonal Discrete Frequency-Coding Waveform Set Design with Minimized Autocorrelation Sidelobes," in IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 4, pp. 1650-1657, Oct. 2009, doi: 10.1109/TAES.2009.5310326.
D. J. Rabideau, "MIMO Radar Waveforms and Cancellation Ratio," in IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1167-1178, APRIL 2012, doi: 10.1109/TAES.2012.6178055.
D. Zoeke and A. Ziroff, "Phase migration effects in moving target localization using switched MIMO arrays," 2015 European Radar Conference (EuRAD), Paris, France, 2015, pp. 85-88, doi: 10.1109/EuRAD.2015.7346243.
H. Sun, F. Brigui and M. Lesturgie, "Analysis and comparison of MIMO radar waveforms," 2014 International Radar Conference, Lille, France, 2014, pp. 1-6, doi: 10.1109/RADAR.2014.7060251.
F. Roos, J. Bechter, N. Appenrodt, J. Dickmann and C. Waldschmidt, "Enhancement of Doppler Unambiguity for Chirp-Sequence Modulated TDM-MIMO Radars," 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany, 2018, pp. 1-4, doi: 10.1109/ICMIM.2018.8443352.
J. Shi, G. Hu, X. Zhang, F. Sun and H. Zhou, "Sparsity-Based Two-Dimensional DOA Estimation for Coprime Array: From Sum–Difference Coarray Viewpoint," in IEEE Transactions on Signal Processing, vol. 65, no. 21, pp. 5591-5604, 1 Nov.1, 2017, doi: 10.1109/TSP.2017.2739105.
C. -L. Liu and P. P. Vaidyanathan, "Hourglass Arrays and Other Novel 2-D Sparse Arrays With Reduced Mutual Coupling," in IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3369-3383, 1 July1, 2017, doi: 10.1109/TSP.2017.2690390.
I. Aboumahmoud, A. Muqaibel, M. Alhassoun and S. Alawsh, "A Review of Sparse Sensor Arrays for Two-Dimensional Direction-of-Arrival Estimation," in IEEE Access, vol. 9, pp. 92999-93017, 2021, doi: 10.1109/ACCESS.2021.3092529.
R. Cohen and Y. C. Eldar, "Optimized Sparse Array Design Based on the Sum Coarray," 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 2018, pp. 3340-3343, doi: 10.1109/ICASSP.2018.8462382.
K. Rambach and B. Yang, "Colocated MIMO radar: Cramer-Rao bound and optimal time division multiplexing for DOA estimation of moving targets," 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013, pp. 4006-4010, doi: 10.1109/ICASSP.2013.6638411.
J. Zhuang, T. Tan, D. Chen and J. Kang, "DOA Tracking Via Signal-Subspace Projector Update," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 4905-4909, doi: 10.1109/ICASSP40776.2020.9054122.
D. -C. Chang and B. -W. Zheng, "Adaptive Generalized Sidelobe Canceler Beamforming With Time-Varying Direction-of-Arrival Estimation for Arrayed Sensors," in IEEE Sensors Journal, vol. 20, no. 8, pp. 4403-4412, 15 April15, 2020, doi: 10.1109/JSEN.2019.2962215.
A. B. Baral and M. Torlak, "Joint Doppler Frequency and Direction of Arrival Estimation for TDM MIMO Automotive Radars," in IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 980-995, June 2021, doi: 10.1109/JSTSP.2021.3073572.
M. F. Duarte and R. G. Baraniuk, "Kronecker Compressive Sensing," in IEEE Transactions on Image Processing, vol. 21, no. 2, pp. 494-504, Feb. 2012, doi: 10.1109/TIP.2011.2165289.
T. T. Cai and L. Wang, "Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise," in IEEE Transactions on Information Theory, vol. 57, no. 7, pp. 4680-4688, July 2011, doi: 10.1109/TIT.2011.2146090.
B. Zhang, D. Xiao and Y. Xiang, "Robust Coding of Encrypted Images via 2D Compressed Sensing," in IEEE Transactions on Multimedia, vol. 23, pp. 2656-2671, 2021, doi: 10.1109/TMM.2020.3014489.
Y. Rivenson and A. Stern, "Compressed Imaging With a Separable Sensing Operator," in IEEE Signal Processing Letters, vol. 16, no. 6, pp. 449-452, June 2009, doi: 10.1109/LSP.2009.2017817.
Wang, HouZhen, Yan Guo, and HuanGuo Zhang. "A method of ultra-large-scale matrix inversion using block recursion." Information 11.11 (2020): 523.
Brigham, E. Oran. The fast Fourier transform and its applications. Prentice-Hall, Inc., 1988.
C. -L. Liu and P. P. Vaidyanathan, "Remarks on the Spatial Smoothing Step in Coarray MUSIC," in IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1438-1442, Sept. 2015, doi: 10.1109/LSP.2015.2409153.
F. Yan, M. Jin and X. Qiao, "Low-Complexity DOA Estimation Based on Compressed MUSIC and Its Performance Analysis," in IEEE Transactions on Signal Processing, vol. 61, no. 8, pp. 1915-1930, April15, 2013, doi: 10.1109/TSP.2013.2243442.
Li, Yunda, and Xiaolei Shang. "Multipath Ghost Target Identification for Automotive MIMO Radar." 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). IEEE, 2022.
Liu, Chenwen, et al. "Multipath propagation analysis and ghost target removal for FMCW automotive radars." IET International Radar Conference (IET IRC 2020). Vol. 2020. IET, 2020.
K. Tekbıyık, A. R. Ekti, A. Görçin, G. K. Kurt and C. Keçeci, "Robust and Fast Automatic Modulation Classification with CNN under Multipath Fading Channels," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-6, doi: 10.1109/VTC2020-Spring48590.2020.9128408.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90521-
dc.description.abstract時分複用多進多出雷達系統已經是一項實現高角度解析度前景廣闊的技術。我們將時分複用多進多出雷達與非均勻天線陣列結合,以提升角度解析度並且增加可以估測目標物的數量。在目標物有移動速度的場景下,速度引起的相位失真會導致角度-多普勒耦合,這就需要事先進行相位補償,以確保二維來向角的估測是正確的。
在本論文中,首先會應用離散傅立葉轉換來估計多普勒頻率,然後我們提出了低複雜度聯合塊正交匹配追蹤算法來執行二維欠定來向角估測,以充分利用空間自由度。我們所提出的低複雜度聯合塊正交匹配追蹤算法的效能表現與前人的算法差不多,但是複雜度卻降低了空間自由度取更號的數量級。
此外,我們還提出了一個迭代估計的方法,這個方法可以使得二為來向角和多普勒頻率估測更加準確。在迭代估計的方法中,我們利用多進多出雷達中虛擬天線的效應來使得多普勒頻率估計的解析度大幅上升。模擬結果將顯示我們所提出的算法和方法能夠提供傑出的效能表現。
zh_TW
dc.description.abstractTime-division multiplexing (TDM) multiple-input multiple-output (MIMO) radar system has been a promising technology for achieving high-angle resolution. We combine the TDM MIMO radar with the non-uniform arrays to enhance the angular resolution and increase the number of detectable sources. In the context of moving source scenario, the motion-induced phase distortion leads to angle-Doppler coupling, which requires the phase compensation in advance for estimating the two-dimensional (2D) direction of arrival (DoA) accurately. In this thesis, the discrete Fourier transform (DFT) is first applied to estimate the Doppler frequency and then the low-complexity joint block orthogonal matching pursuit (Joint-BOMP) algorithm is proposed to perform the underdetermined 2D-DoA estimation to fully exploit the degree of freedom (DoF). The proposed low-complexity Joint-BOMP can reach the performance as well as that of the previous works while the computational complexity can be reduced by the square root of DoF. Furthermore, we propose an iterative estimation scheme to make the 2D-DoA and Doppler frequency estimations more accurate. For the iterative estimation scheme, we make the estimation of Doppler frequency enjoy the effect of virtual array in the MIMO radar to increase the resolution. Simulation results will demonstrate that the proposed algorithm and scheme can provide superior performance.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:27:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:27:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents1 Introduction 1
1.1 Background 1
1.2 Contributions 6
1.3 Overview of the Thesis 8
1.4 Notations 9
2 System Model 10
2.1 MIMO Radar Configuration 10
2.2 Two-dimensional Non-uniform Array 13
2.3 TDM MIMO Radar with Nested Planar Arrays 16
2.4 The Design of Antenna Allocation with Fixed Total Antennas 19
2.5 Signal Model 20
2.5.1 Signal Model before Doppler Compensation 21
2.5.2 Signal Model after Doppler Compensation 23
3 Algorithms for Doppler and 2D-DoA Estimation 26
3.1 Doppler Frequency Estimation 26
3.1.1 Motion-Induced Phase Distortion 27
3.1.2 The Solution for Doppler Frequency Ambiguity 28
3.2 2D-DoA Estimation 30
3.2.1 Kronecker Compressive Sensing 32
3.2.2 Kronecker OMP 33
3.2.3 2D Compressive Sensing 35
3.2.4 Proposed Low-complexity Joint-BOMP 36
3.3 Iterative 2D-DoA and Doppler Frequency Estimation Scheme 40
4 Complexity Analysis 44
4.1 Doppler Frequency Estimation 44
4.2 2D-DoA Estimation 45
5 Simulation Results 48
5.1 Performance Evaluation versus SNR and Snapshots without Doppler Frequency 49
5.1.1 Detection Performance between 2DSS-MUSIC and OMP-based Algorithms 50
5.1.2 RMSE Performance versus SNR and Snapshots between 2DSS-MUSIC and OMP-based Algorithms 55
5.2 Performance Evaluation versus SNR and Snapshots with Doppler Frequency based on Iterative Estimation 57
5.2.1 With Doppler Compensation and without Doppler Compensation Comparison 58
5.2.2 Doppler RMSE Performance versus SNR between 2DSS-MUSIC and OMP-based Algorithms 59
5.2.3 2D-DoA RMSE Performance versus SNR between 2DSS-MUSIC and OMP-based Algorithms 64
5.2.4 Doppler RMSE Performance versus Snapshots between 2DSS-MUSIC and OMP-based Algorithms 68
5.2.5 2D-DoA RMSE Performance versus Snapshots between 2DSS-MUSIC and OMP-based Algorithms 72
5.3 Computational Time Comparison 76
6 Conclusion 77
7 Future Work 78
7.1 Multipath Scenario 78
7.2 More Discussion on Sparse Arrays 79
Bibliography 79
A Derivation of the Equivalent Least Squares 90
B Inversion of the Block Matrix 93
-
dc.language.isoen-
dc.title基於時分複用多進多出雷達使用非均勻天線陣列進行迭代二維來向角和多普勒估計zh_TW
dc.titleIterative Two-dimensional Direction of Arrival and Doppler Estimation based on Time-division Multiplexing MIMO Radar with Non-uniform Arraysen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee馮世邁;劉俊麟;黃彥銘 ;蔡尚澕zh_TW
dc.contributor.oralexamcommitteeSee-May Phoong;Chun-Lin Liu;Yenming Huang;Shang-Ho Lawrence Tsaien
dc.subject.keyword時分複用多進多出雷達,非均勻天線陣列,壓縮感知,二維欠定來向角估測,迭代估計的方法,zh_TW
dc.subject.keywordTDM MIMO radar,Non-uniform arrays,Compressive sensing,Underdetermined 2D-DoA estimation,Iterative estimation scheme,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202303626-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2028-08-02-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
1.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved