Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorGuan-Ying Huangen
dc.contributor.author黃冠穎zh_TW
dc.date.accessioned2021-05-20T20:07:42Z-
dc.date.available2009-08-13
dc.date.available2021-05-20T20:07:42Z-
dc.date.copyright2009-08-13
dc.date.issued2009
dc.date.submitted2009-08-05
dc.identifier.citation[1] 'Cancer Facts & Figures 2009,' American Cancer Society2009.
[2] R. A. Smith, V. Cokkinides, and H. J. Eyre, 'American Cancer Society guidelines for the early detection of cancer, 2006,' CA Cancer J Clin, vol. 56, pp. 11-25; quiz 49-50, Jan-Feb 2006.
[3] C. M. Sehgal, S. P. Weinstein, P. H. Arger, and E. F. Conant, 'A review of breast ultrasound,' J Mammary Gland Biol Neoplasia, vol. 11, pp. 113-23, Apr 2006.
[4] T. J. Hall, Y. N. Zhu, and C. S. Spalding, 'In vivo real-time freehand palpation imaging,' Ultrasound in Medicine and Biology, vol. 29, pp. 427-435, 2003.
[5] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, 'Elastography: a quantitative method for imaging the elasticity of biological tissues,' Ultrason Imaging, vol. 13, pp. 111-34, Apr 1991.
[6] R. C. Booi, P. L. Carson, M. O'Donnell, M. A. Roubidoux, A. L. Hall, and J. M. Rubin, 'Characterization of cysts using differential correlation coefficient values from two dimensional breast elastography: Preliminary study,' Ultrasound in Medicine and Biology, vol. 34, pp. 12-21, Jan 2008.
[7] B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, 'Elastography of breast lesions: Initial clinical results,' Radiology, vol. 202, pp. 79-86, Jan 1997.
[8] D. M. Regner, G. K. Hesley, N. J. Hangiandreou, M. J. Morton, M. R. Nordland, D. D. Meixner, T. J. Hall, M. A. Farrell, J. N. Mandrekar, W. S. Harmsen, and J. W. Charboneau, 'Breast lesions: Evaluation with US strain imaging - Clinical experience of multiple observers,' Radiology, vol. 238, pp. 425-437, Feb 2006.
[9] N. Nitta, M. Yamakawa, T. Shiina, E. Ueno, M. M. Doyley, and J. C. Bamber, 'Tissue elasticity imaging based on combined autocorrelation method and 3-D tissue model,' in Ultrasonics Symposium, 1998. Proceedings., 1998 IEEE, 1998, pp. 1447-1450 vol.2.
[10] M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J. L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, 'Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging,' Ultrasound in Medicine and Biology, vol. 34, pp. 1373-1386, Sep 2008.
[11] A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, 'Breast disease: Clinical application of US elastography for diagnosis,' Radiology, vol. 239, pp. 341-350, May 2006.
[12] A. Thitaikumar, T. A. Krouskop, and J. Ophir, 'Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography,' Physics in Medicine and Biology, vol. 52, pp. 13-28, Jan 7 2007.
[13] U. Techavipoo and T. Varghese, 'Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding,' Ultrasound in Medicine and Biology, vol. 31, pp. 529-536, Apr 2005.
[14] S. Srinivasan, R. Righetti, and J. Ophir, 'Trade-offs between the axial resolution and the signal-to-noise ratio in elastography,' Ultrasound in Medicine and Biology, vol. 29, pp. 847-866, Jun 2003.
[15] A. Thomas, S. Kümmel, F. Fritzsche, M. Warm, B. Ebert, B. Hamm, and T. Fischer, 'Real-Time Sonoelastography Performed in Addition to B-Mode Ultrasound and Mammography: Improved Differentiation of Breast Lesions?,' Academic Radiology, vol. 13, pp. 1496-1504, 2006.
[16] H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, and G. Hager, 'Ultrasound elastography: A dynamic programming approach,' IEEE Transactions on Medical Imaging, vol. 27, pp. 1373-1377, Oct 2008.
[17] J. Shao, J. Wang, Y. Zhang, L. Cui, K. Liu, and J. Bai, 'Subtraction elastography for the evaluation of ablation-induced lesions: a feasibility study,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, pp. 44-54, Jan 2009.
[18] R. C. Gonzalez, R. E. Woods, and B. R. Masters, Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009.
[19] L. Levy, M. Suissa, J. F. Chiche, G. Ternan, and B. Martin, 'BIRADS ultrasonography,' European Journal of Radiology, vol. 61, pp. 202-211, Feb 2007.
[20] H. Bando, E. Ueno, E. Tohno, T. Shiina, M. Yamakawa, K. Waki, T. Matsumura, T. Umemoto, and A. Itoh, 'Clinical application of ultrasound elastography for breast cancer diagnosis.,' Breast Cancer Research and Treatment, vol. 100, pp. S44-S44, 2006.
[21] P. Perona and J. Malik, 'Scale-Space and Edge-Detection Using Anisotropic Diffusion,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 629-639, Jul 1990.
[22] M. A. Cohen and S. Grossberg, 'Neural Dynamics of Brightness Perception - Features, Boundaries, Diffusion, and Resonance,' Perception & Psychophysics, vol. 36, pp. 428-456, 1984.
[23] J. M. Thijssen, B. J. Oosterveld, and R. F. Wagner, 'Gray Level Transforms and Lesion Detectability in Echographic Images,' Ultrasonic Imaging, vol. 10, pp. 171-195, Jul 1988.
[24] F. K. Quek and C. Kirbas, 'Vessel extraction in medical images by wave-propagation and traceback,' IEEE Trans Med Imaging, vol. 20, pp. 117-31, Feb 2001.
[25] J. Serra, 'Biomedical Image Analysis by Mathematical Morphology,' Pathologie Biologie, vol. 27, pp. 205-207, 1979.
[26] S. R. Sternberg, 'Grayscale Morphology,' Computer Vision Graphics and Image Processing, vol. 35, pp. 333-355, Sep 1986.
[27] H. J. A. M. Heijmans, 'Theoretical Aspects of Gray-Level Morphology,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 568-582, Jun 1991.
[28] J. Fan, D. Y. Yau, A. K. Elmagarmid, and W. G. Aref, 'Automatic image segmentation by integrating color-edge extraction and seeded region growing,' IEEE Trans Image Process, vol. 10, pp. 1454-66, 2001.
[29] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, 'Design of an Image Edge-Detection Filter Using the Sobel Operator,' IEEE Journal of Solid-State Circuits, vol. 23, pp. 358-367, Apr 1988.
[30] A. K. Cherri and M. A. Karim, 'Optical Symbolic Substitution - Edge-Detection Using Prewitt, Sobel, and Roberts Operators,' Applied Optics, vol. 28, pp. 4644-4648, Nov 1 1989.
[31] L. S. Davis, 'A survey of edge detection techniques,' Technical Report. Tr-273 Nsf-oca-gj32258x-24. Grant Nsf-gj-32258x. 1973 November. Computer Science Center, University Of Maryland, College Park. 60 P. Ntis: Pb-226 166/7ga; Hc.
[32] R. M. Haralick and L. G. Shapiro, 'Image Segmentation Techniques,' Computer Vision Graphics and Image Processing, vol. 29, pp. 100-132, 1985.
[33] T. Pavlidis and Y. T. Liow, 'Integrating Region Growing and Edge-Detection,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 225-233, Mar 1990.
[34] R. D. Stewart, I. Fermin, and M. Opper, 'Region growing with pulse-coupled neural networks: an alternative to seeded region growing,' IEEE Trans Neural Netw, vol. 13, pp. 1557-62, 2002.
[35] R. Adams and L. Bischof, 'Seeded Region Growing,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp. 641-647, Jun 1994.
[36] R. Chandrasekhar, J. Ophir, T. Krouskop, and K. Ophir, 'Elastographic image quality vs. tissue motion in vivo,' Ultrasound in Medicine and Biology, vol. 32, pp. 847-855, Jun 2006.
[37] T. Varghese and J. Ophir, 'A theoretical framework for performance characterization of elastography: the strain filter,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 44, pp. 164-72, 1997.
[38] H. C. Lin, L. L. Wang, and S. N. Yang, 'Automatic determination of the spread parameter in Gaussian smoothing,' Pattern Recognition Letters, vol. 17, pp. 1247-1252, Oct 25 1996.
[39] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, 'Uniqueness of the Gaussian Kernel for Scale-Space Filtering,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, pp. 26-33, Jan 1986.
[40] A. Field, Discovering statistics using spss, 3rd ed. Thousand Oaks, CA: SAGE Publications, 2009.
[41] N. Cho, W. K. Moon, and J. S. Park, 'Real-time US elastography in the differentiation of suspicious microcalcifications on mammography,' European Radiology, vol. 19, pp. 1621-1628, Jul 2009.
[42] N. Cho, W. K. Moon, J. S. Park, J. H. Cha, M. Jang, and M. H. Seong, 'Nonpalpable breast masses: Evaluation by US elastography,' Korean Journal of Radiology, vol. 9, pp. 111-118, Mar-Apr 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9051-
dc.description.abstract近年來,乳房彈性超音波已成為測量腫瘤彈性最常見的方法,醫生必須施以輕微的壓力於腫瘤組織之上,藉以得到一連串連續的動態彈力影像。而醫生將會從這一序列的影像中挑選出最具代表性的一張影像,此張影像之品質優劣亦將決定診斷的準確性。此篇論文之目的為量化彈力超音波影像的品質並選出彈力超音波影片中最具代表性的一張影像,同時也將實作一可半自動切割腫瘤以利計算腫瘤的彈性比率。利用使用者在首張影像所選取的種子點,配合邊緣偵測(Edge Detection)以及區域增長(Region Growing)的方法可自動地切出整個資料中的腫瘤輪廓,此外,種子點會根據之前影像中腫瘤移動的方式做相同的位移,如此方可得到較好的切割結果。根據所得的腫瘤輪廓中的一致性以及腫瘤跟正常組織的對比性,可以量化兩種彈力影像品質:信號雜訊比(SNRe)以及對比雜訊比(CNRe),並根據量化結果挑選出最具代表性之影像作為判斷良惡性之用。本實驗中以141個經過病理驗證的病例進行測試,包含93個良性以及48個惡性的病例,比較使用本篇論文的方法所選的影像以及所得彈力最差的影像、壓力最大時的影像和醫生所選之影像,並計算Mann-Whitney U測試、效能以及ROC曲線來評估結果。經由實驗,SNRe的準確率為84.40%,敏感度為83.33%,特異性為84.95%,而ROC曲線的Az值則是0.90;CNRe則是有82.27%的準確率,79.17%敏感度,83.87%特異性,Az值為0.88,兩者均有不錯的效率,因此我們歸納出以此種方式進行影像品質的量化並挑選出最具代表性影像是可行並且較醫生挑選為客觀的。此外,為了縮減計算分析的時間,亦提出了一種fast-selection方式來挑選代表影像,此方法將只針對第一張影像進行腫瘤切割,經測試仍有一定的準確度並且大幅的減少分析時間。zh_TW
dc.description.abstractRecently, the sonoelastography has been the most general technique to measure the tumor strain. In the sonoelastography, the physicians need to lightly compress a tumor to obtain a dynamic elastographic image sequence which is composed of continuous elastographic slice. A representative slice of the dynamic elastographic image sequence will be selected by the physician and the quality of this selected slice will affect the diagnosis result. The purpose of this study is to quantify the elastographic images quality and select a representative slice from an elastography movie file. This study also proposes a semi-automatic segmentation to find the tumor contour for calculating the hard ratio of tumor. Utilizing a group of seeds given by the user in the first slice, the automatic segmentation using the edge-detection and region growing methods is applied in the first slice and then the subsequent slices. Moreover, the seeds of the subsequent slices will be moved according to the tumor displacement to improve the segmentation results. After finding the tumor contours, two quality quantification methods, the signal to noise ratio of (SNRe) and contrast to noise ratio (CNRe) of elastographic slice, are computed according to the uniformity inside the selected region or the contrast of the tumor and the surrounding normal tissue. Finally, find a representative slice based on the quantification and use the selected slice to differentiate the benign and the malignant lesions. In this study, 141 biopsy-proved sonoelastography composed of 93 benign and 48 malignant masses are used to evaluate the performance of the quantification methods. In the experiments, the diagnosis results of the slices selected by two proposed methods are compared with those of the maximum compression slices, maximum strain slices, and the slices selected by physicians. The Mann-Whitney U test, performance indexes, and receiver operation curve (ROC) are applied to examine the effectiveness of the proposed quantification methods. According to the result of experiment, the accuracy, sensitivity, specificity, and the Az value for the SNRe are 84.40%, 83.33%, 84.95% and 0.90, respectively and for the CNRe are 82.27%, 79.17%, 83.87% and 0.88, respectively. We can conclude that using the quantification methods to select the representative slice of the elastography is practicable and more objective than that selected by the physician. Moreover, to reduce the run time of the quantification analysis in this paper, a smart fast-selection method is also proposed and only the tumor contour of the selected slice is required to be segmented. The fast-selection method can achieve an acceptable performance and greatly reduce the execution time of the analysis.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:07:42Z (GMT). No. of bitstreams: 1
ntu-98-R96922126-1.pdf: 2406975 bytes, checksum: a42e4b481f3209921e47aa74d0fbe74f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
Abstract iv
TABLE OF CONTENTS vi
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Material and Related Works 4
2.1 Data Acquisition 4
2.2 HSV Color Space 5
2.3 Elastography Scoring System 6
Chapter 3 Dynamic Elastography Tumor Segmentation and Analysis 9
3.1 Dynamic Elastographic Image Segmentation 10
3.1.1 Pre-processing 11
3.1.2 Segmentation 14
3.2 Elastography Image Quality Quantification 17
3.2.1 Elastography Signal to Noise Ratio (SNRe) 17
3.2.2 Elastography Contrast to Noise Ratio (CNRe) 19
3.3 Hard Ratio 20
Chapter 4 Experiment Result 21
4.1 Quantification Performance 22
4.2 The Fast-Selection Method 29
4.3 Experiment Results 35
Chapter 5 Conclusion and Future Works 44
References 46
dc.language.isozh-TW
dc.title動態乳房彈性超音波之腫瘤偵測與分析zh_TW
dc.titleTumor Analysis of Dynamic Breast Elastographyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊升,張允中
dc.subject.keyword乳房彈性超音波,影像品質量化,zh_TW
dc.subject.keywordbreast elastography,elastography image quality quantification,en
dc.relation.page49
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf2.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved