請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90505
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張翠玉 | zh_TW |
dc.contributor.advisor | Tsuiyu Chang | en |
dc.contributor.author | 邵昱勳 | zh_TW |
dc.contributor.author | Yu-Hsun Shao | en |
dc.date.accessioned | 2023-10-03T16:23:24Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centurioni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., Fringer, O. B., Fu, K.-H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., . . . Tang, T.-Y. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521(7550), 65-69. https://doi.org/10.1038/nature14399
Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. Bulletin of the Seismological Society of America, 72(6B), S225-S242. https://doi.org/10.1785/BSSA07206B0225 Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521-1532. https://doi.org/10.1785/BSSA0680051521 Ardhuin, F., Gualtieri, L., & Stutzmann, E. (2015). How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophysical Research Letters, 42(3), 765-772. https://doi.org/10.1002/2014GL062782 Bard, P.-Y., & Bouchon, M. (1980). The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves. Bulletin of the Seismological Society of America, 70(4), 1263-1286. https://doi.org/10.1785/BSSA0700041263 Batsi, E., Tsang‐Hin‐Sun, E., Klingelhoefer, F., Bayrakci, G., Chang, E. T., Lin, J. Y., Dellong, D., Monteil, C., & Géli, L. (2019). Nonseismic signals in the ocean: Indicators of deep sea and seafloor processes on ocean‐bottom seismometer data. Geochemistry, Geophysics, Geosystems, 20(8), 3882-3900. https://doi.org/10.1029/2019GC008349 Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V. J., Dumke, I., Dünnbier, K., & Ferré, B. (2014). Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science, 343(6168), 284-287. https://doi.org/10.1126/science.1246298 Brown, J. R., Beroza, G. C., & Shelly, D. R. (2008). An autocorrelation method to detect low frequency earthquakes within tremor. Geophysical Research Letters, 35(16). https://doi.org/10.1029/2008GL034560 Buijsman, M., Kanarska, Y., & McWilliams, J. (2010). On the generation and evolution of nonlinear internal waves in the South China Sea. Journal of Geophysical Research: Oceans, 115(C2). https://doi.org/10.1175/2011JPO4587.1 Chouet, B. (1988). Resonance of a fluid‐driven crack: Radiation properties and implications for the source of long‐period events and harmonic tremor. Journal of Geophysical Research: Solid Earth, 93(B5), 4375-4400. https://doi.org/10.1029/JB093iB05p04375 Clayton, C., & Hay, S. (1994). Gas migration mechanisms from accumulation to surface. Bulletin of the Geological Society of Denmark, 41(1), 12-23. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297. https://doi.org/10.1007/BF00994018 Delisle, G., & Berner, U. (2002). Gas hydrates acting as cap rock to fluid discharge in the Makran accretionary prism? Geological Society, London, Special Publications, 195(1), 137-146. https://doi.org/10.1144/GSL.SP.2002.195.01.09 Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition, Dillon, W. P. (2002). Gas Hydrate in the Ocean Environment. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition) (pp. 473-486). Academic Press. https://doi.org/10.1016/B0-12-227410-5/00276-3 Dupré, S., Scalabrin, C., Grall, C., Augustin, J.-M., Henry, P., Şengör, A. M. C., Görür, N., Çağatay, M. N., & Géli, L. (2015). Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging. Journal of Geophysical Research: Solid Earth, 120(5), 2891-2912. https://doi.org/10.1002/2014JB011617 Díaz, J., Gallart, J., & Gaspà, O. (2007). Atypical seismic signals at the Galicia Margin, North Atlantic Ocean, related to the resonance of subsurface fluid-filled cracks. Tectonophysics, 433(1), 1-13. https://doi.org/10.1016/j.tecto.2007.01.004 Ebeling, C. W. (2012). Chapter One - Inferring Ocean Storm Characteristics from Ambient Seismic Noise: A Historical Perspective. In R. Dmowska (Ed.), Advances in Geophysics (Vol. 53, pp. 1-33). Elsevier. https://doi.org/10.1016/B978-0-12-380938-4.00001-X Embriaco, D., Marinaro, G., Frugoni, F., Monna, S., Etiope, G., Gasperini, L., Polonia, A., Del Bianco, F., Çağatay, M. N., Ulgen, U. B., & Favali, P. (2014). Monitoring of gas and seismic energy release by multiparametric benthic observatory along the North Anatolian Fault in the Sea of Marmara (NW Turkey). Geophysical journal international, 196(2), 850-866. https://doi.org/10.1093/gji/ggt436 Feng, Y., Tang, Q., Li, J., Sun, J., & Zhan, W. (2021). Internal Solitary Waves Observed on the Continental Shelf in the Northern South China Sea From Acoustic Backscatter Data. Frontiers in Marine Science, 1775. https://doi.org/10.3389/fmars.2021.734075 Ferrazzini, V., Chouet, B., Fehler, M., & Aki, K. (1990). Quantitative analysis of long‐period events recorded during hydrofracture experiments at Fenton Hill, New Mexico. Journal of Geophysical Research: Solid Earth, 95(B13), 21871-21884. https://doi.org/10.1029/JB095iB13p21871 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., & Myhre, G. (2007). Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Franek, P., Plaza‐Faverola, A., Mienert, J., Buenz, S., Ferré, B., & Hubbard, A. (2017). Microseismicity linked to gas migration and leakage on the Western Svalbard Shelf. Geochemistry, Geophysics, Geosystems, 18(12), 4623-4645. https://doi.org/10.1002/2017GC007107 Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical journal international, 165(1), 149-166. https://doi.org/10.1111/j.1365-246X.2006.02865.x Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., & Cai, J. (2018). Recent advances in convolutional neural networks. Pattern recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013 Guo, T.-M., Wu, B.-H., Zhu, Y.-H., Fan, S.-S., & Chen, G.-J. (2004). A review on the gas hydrate research in China. Journal of Petroleum Science and Engineering, 41(1), 11-20. https://doi.org/10.1016/S0920-4105(03)00139-6 Han, W.-C., Chen, L., Liu, C.-S., Berndt, C., & Chi, W.-C. (2019). Seismic analysis of the gas hydrate system at Pointer Ridge offshore SW Taiwan. Marine and Petroleum Geology, 105, 158-167. https://doi.org/10.1016/j.marpetgeo.2019.04.028 Harkrider, D., Stevens, J., & Archambeau, C. (1994). Theoretical Rayleigh and Love waves from an explosion in prestressed source regions. Bulletin of the Seismological Society of America, 84(5), 1410-1442. https://doi.org/10.1785/BSSA0840051410 Haubrich, R., Munk, W., & Snodgrass, F. (1963). Comparative spectra of microseisms and swell. Bulletin of the Seismological Society of America, 53(1), 27-37. https://doi.org/10.1785/BSSA0530010027 Ho, T. K. (1995). Random decision forests. Proceedings of 3rd international conference on document analysis and recognition, Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 Hoffmann, G., Al-Yahyai, S., Naeem, G., Kociok, M., & Grützner, C. (2014). An Indian Ocean tsunami triggered remotely by an onshore earthquake in Balochistan, Pakistan. Geology, 42(10), 883-886. https://doi.org/10.1130/G35756.1 Hovland, M., Judd, A. G., & Burke Jr, R. (1993). The global flux of methane from shallow submarine sediments. Chemosphere, 26(1-4), 559-578. https://doi.org/10.1016/0045-6535(93)90442-8 Hsu, S.-K., Kuo, J., Chung-Liang, L., Ching-Hui, T., Doo, W.-B., Ku, C.-Y., & Sibuet, J.-C. (2008). Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 7. https://doi.org/10.3319/TAO.2008.19.6.767(PT) Hsu, S.-K., Shiao-Shan, L., Wang, S.-Y., Ching-Hui, T., Doo, W.-B., Song-Chuen, C., Jing-Yi, L., Yeh, Y.-C., Wang, H.-F., & Cheng-Wei, S. (2018). Seabed gas emissions and submarine landslides off SW Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 29(1), 7. https://doi.org/10.3319/TAO.2016.10.04.01 Hsu, S.-K., Wang, S.-Y., Liao, Y.-C., Yang, T. F., Jan, S., Lin, J.-Y., & Chen, S.-C. (2013). Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters, 369, 98-107. https://doi.org/10.1016/j.epsl.2013.03.013 Hui, G., Li, S., Li, X., Guo, L., Suo, Y., Somerville, I. D., Zhao, S., Hu, M., Lan, H., & Zhang, J. (2016). Temporal and spatial distribution of Cenozoic igneous rocks in the South China Sea and its adjacent regions: implications for tectono-magmatic evolution. Geological Journal, 51(S1), 429-447. https://doi.org/10.1002/gj.2801 Jiao, L., Su, X., Wang, Y., Jiang, H., Zhang, Y., & Chen, F. (2015). Microbial diversity in the hydrate-containing and -free surface sediments in the Shenhu area, South China Sea. Geoscience Frontiers, 6(4), 627-633. https://doi.org/10.1016/j.gsf.2014.04.007 LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791 Lee, T.-W. (1998). ICA for Feature Extraction. In T.-W. Lee (Ed.), Independent Component Analysis: Theory and Applications (pp. 167-175). Springer US. https://doi.org/10.1007/978-1-4757-2851-4_8 Li, C.-F., Zhou, Z., Hao, H., Chen, H., Wang, J., Chen, B., & Wu, J. (2008). Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. Journal of Asian Earth Sciences, 31(4-6), 546-561. https://doi.org/10.1016/j.jseaes.2007.09.004 Li, J.-f., Ye, J.-l., Qin, X.-w., Qiu, H.-j., Wu, N.-y., Lu, H.-l., Xie, W.-w., Lu, J.-a., Peng, F., & Xu, Z.-q. (2018). The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1), 5-16. http://dx.doi.org/10.31035/cg2018003 Li, X.-S., Xu, C.-G., Zhang, Y., Ruan, X.-K., Li, G., & Wang, Y. (2016). Investigation into gas production from natural gas hydrate: A review. Applied Energy, 172, 286-322. https://doi.org/10.1016/j.apenergy.2016.03.101 Liang, H., Sun, X., Sun, Y., & Gao, Y. (2017). Text feature extraction based on deep learning: a review. EURASIP Journal on Wireless Communications and Networking, 2017(1), 211. https://doi.org/10.1186/s13638-017-0993-1 Liu, C.-S., Schnurle, P., Wang, Y., San-Hsiung, C., Song-Chuen, C., & Hsiuan, T.-H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 615. https://doi.org/10.3319/TAO.2006.17.4.615(GH) MacDonald, I., Guinasso Jr, N., Sassen, R., Brooks, J., Lee, L., & Scott, K. (1994). Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico. Geology, 22(8), 699-702. https://doi.org/10.1130/0091-7613(1994)022%3C0699:GHTBTS%3E2.3.CO;2 Maslin, M., Owen, M., Betts, R., Day, S., Dunkley Jones, T., & Ridgwell, A. (2010). Gas hydrates: past and future geohazard? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1919), 2369-2393. https://doi.org/10.1098/rsta.2010.0065 Morley, C. (2016). Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62-86. https://doi.org/10.1016/j.jseaes.2016.01.013 Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w Naeini, E. Z., & Prindle, K. (2018). Machine learning and learning from machines. The Leading Edge, 37(12), 886-893. https://doi.org/10.1190/tle37120886.1 Nikolovska, A., Sahling, H., & Bohrmann, G. (2008). Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochemistry, Geophysics, Geosystems, 9(10). https://doi.org/10.1029/2008GC002118 Padman, L., & Erofeeva, S. (2005). Tide model driver (TMD) manual. Earth and Space research. Perantonis, S. J., & Virvilis, V. (1999). Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component Analysis. Neural Processing Letters, 10(3), 243-252. https://doi.org/10.1023/A:1018792728057 Pontoise, B., & Hello, Y. (2002). Monochromatic infra‐sound waves recorded offshore Ecuador: Possible evidence of methane release. Terra Nova, 14(6), 425-435. https://doi.org/10.1046/j.1365-3121.2002.00437.x Römer, M., Riedel, M., Scherwath, M., Heesemann, M., & Spence, G. D. (2016). Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Geochemistry, Geophysics, Geosystems, 17(9), 3797-3814. https://doi.org/10.1002/2016GC006528 Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. https://psycnet.apa.org/doi/10.1037/h0042519 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. Ruppel, C. D., & Kessler, J. D. (2017). The interaction of climate change and methane hydrates. Reviews of Geophysics, 55(1), 126-168. https://doi.org/10.1002/2016RG000534 Sauter, E. J., Muyakshin, S. I., Charlou, J.-L., Schlüter, M., Boetius, A., Jerosch, K., Damm, E., Foucher, J.-P., & Klages, M. (2006). Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth and Planetary Science Letters, 243(3-4), 354-365. https://doi.org/10.1016/j.epsl.2006.01.041 Serov, P., Mattingsdal, R., Winsborrow, M., Patton, H., & Andreassen, K. (2023). Widespread natural methane and oil leakage from sub-marine Arctic reservoirs. Nature Communications, 14(1), 1782. https://doi.org/10.1038/s41467-023-37514-9 Skarke, A., Ruppel, C., Kodis, M., Brothers, D., & Lobecker, E. (2014). Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience, 7(9), 657-661. https://doi.org/10.1038/ngeo2232 Spain, E. A., Johnson, S. C., Hutton, B., Whittaker, J., Lucieer, V., Watson, S., Fox, J., Lupton, J., Arculus, R., & Bradney, A. (2020). Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean. Earth and Space Science, 7(3), e2019EA000695. https://doi.org/10.1029/2019EA000695 Sultan, N., Plaza-Faverola, A., Vadakkepuliyambatta, S., Buenz, S., & Knies, J. (2020). Impact of tides and sea-level on deep-sea Arctic methane emissions. Nature Communications, 11(1), 5087. https://doi.org/10.1038/s41467-020-18899-3 Sultan, N., Riboulot, V., Ker, S., Marsset, B., Geli, L., Tary, J.-B., Klingelhoefer, F., Voisset, M., Lanfumey, V., & Colliat, J.-L. (2011). Dynamics of fault‐fluid‐hydrate system around a shale‐cored anticline in deepwater Nigeria. Journal of Geophysical Research: Solid Earth, 116(B12). https://doi.org/10.1029/2011JB008218 Sun, Q., Wu, S., Cartwright, J., & Dong, D. (2012). Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 315-318, 1-14. https://doi.org/10.1016/j.margeo.2012.05.003 Sun, Q., Wu, S., Cartwright, J., Wang, S., Lu, Y., Chen, D., & Dong, D. (2014). Neogene igneous intrusions in the northern South China Sea: Evidence from high-resolution three dimensional seismic data. Marine and Petroleum Geology, 54, 83-95. https://doi.org/10.1016/j.marpetgeo.2014.02.014 Tary, J. B., Géli, L., Guennou, C., Henry, P., Sultan, N., Çağatay, N., & Vidal, V. (2012). Microevents produced by gas migration and expulsion at the seabed: a study based on sea bottom recordings from the Sea of Marmara. Geophysical journal international, 190(2), 993-1007. https://doi.org/10.1111/j.1365-246X.2012.05533.x Thatcher, K., Westbrook, G., Sarkar, S., & Minshull, T. (2013). Methane release from warming‐induced hydrate dissociation in the West Svalbard continental margin: Timing, rates, and geological controls. Journal of Geophysical Research: Solid Earth, 118(1), 22-38. https://doi.org/10.1029/2012JB009605 Toksöz, M. N., Thomson, K. C., & Ahrens, T. J. (1971). Generation of seismic waves by explosions in prestressed media. Bulletin of the Seismological Society of America, 61(6), 1589-1623. https://doi.org/10.1785/BSSA0610061589 Tong, C., & Kennett, B. L. (1996). Automatic seismic event recognition and later phase identification for broadband seismograms. Bulletin of the Seismological Society of America, 86(6), 1896-1909. https://doi.org/10.1785/BSSA0860061896 Trung, N. N. (2012). The gas hydrate potential in the South China Sea. Journal of Petroleum Science and Engineering, 88, 41-47. https://doi.org/10.1016/j.petrol.2012.01.007 Turing, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433 Um, T. T., Pfister, F. M. J., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U., & Kulić, D. (2017). Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK. https://doi.org/10.1145/3136755.3136817 Varas, G., Vidal, V., & Géminard, J.-C. (2009). Dynamics of crater formations in immersed granular materials. Physical Review E, 79(2), 021301. https://doi.org/10.1103/PhysRevE.79.021301 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. https://doi.org/10.48550/arXiv.1706.03762 Vidal, V., Géminard, J. C., Divoux, T., & Melo, F. (2006). Acoustic signal associated with the bursting of a soap film which initially closes an overpressurized cavity. The European Physical Journal B - Condensed Matter and Complex Systems, 54(3), 321-339. https://doi.org/10.1140/epjb/e2006-00450-0 Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2016). Show and tell: Lessons learned from the 2015 mscoco image captioning challenge. IEEE transactions on pattern analysis and machine intelligence, 39(4), 652-663. https://doi.org/10.1109/TPAMI.2016.2587640 Wang, T. K., Yang, B. J., Deng, J.-M., Lee, C.-S., & Liu, C.-S. (2010). Seismic imaging of gas hydrates in the northernmost South China sea. Marine geophysical researches, 31(1), 59-76. https://doi.org/10.1007/s11001-010-9096-7 Wei, J., Liang, J., Lu, J., Zhang, W., & He, Y. (2019). Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea-results of the fifth gas hydrate drilling expedition. Marine and Petroleum Geology, 110, 287-298. https://doi.org/10.1016/j.marpetgeo.2019.07.028 Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S., & Trujillo, J. (1998). A comparison of select trigger algorithms for automated global seismic phase and event detection. Bulletin of the Seismological Society of America, 88(1), 95-106. https://doi.org/10.1785/BSSA0880010095 Wu, S., Wang, X., Wong, H. K., & Zhang, G. (2007). Low-amplitude BSRs and gas hydrate concentration on the northern margin of the South China Sea. Marine geophysical researches, 28, 127-138. https://doi.org/10.1007/s11001-007-9020-y Wu, S., Zhang, G., Huang, Y., Liang, J., & Wong, H. K. (2005). Gas hydrate occurrence on the continental slope of the northern South China Sea. Marine and Petroleum Geology, 22(3), 403-412. https://doi.org/10.1016/j.marpetgeo.2004.11.006 Xu, A., & Chen, X. (2021). A strong internal solitary wave with extreme velocity captured northeast of Dong-Sha atoll in the northern South China Sea. Journal of Marine Science and Engineering, 9(11), 1277. https://doi.org/10.3390/jmse9111277 Xu, W., & Germanovich, L. N. (2006). Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. Journal of Geophysical Research: Solid Earth, 111(B1). https://doi.org/10.1029/2004JB003600 Xu, Z., Hu, T., Pang, X.-Q., Wang, E.-Z., Liu, X.-H., Wu, Z.-Y., Chen, D., Li, C.-R., Zhang, X.-W., & Wang, T. (2022). Research progress and challenges of natural gas hydrate resource evaluation in the South China Sea. Petroleum Science, 19(1), 13-25. https://doi.org/10.1016/j.petsci.2021.12.007 Ye, J.-l., Qin, X.-w., Xie, W.-w., Lu, H.-l., Ma, B.-j., Qiu, H.-j., Liang, J.-q., Lu, J.-a., Kuang, Z.-g., & Lu, C. (2020). The second natural gas hydrate production test in the South China Sea. China Geology, 3(2), 197-209. http://dx.doi.org/10.31035/cg2020043 Ye, Q., Mei, L., Shi, H., Camanni, G., Shu, Y., Wu, J., Yu, L., Deng, P., & Li, G. (2018). The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data. Earth-science reviews, 187, 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013 Zhang, G., Shao, L., Qiao, P., Cao, L., Pang, X., Zhao, Z., Xiang, X., & Cui, Y. (2020). Cretaceous–Palaeogene sedimentary evolution of the South China Sea region: A preliminary synthesis. Geological Journal, 55(4), 2662-2683. https://doi.org/10.1002/gj.3533 Zhang, Y., Su, X., Chen, F., Wang, Y., Jiao, L., Dong, H., Huang, Y., & Jiang, H. (2012). Microbial diversity in cold seep sediments from the northern South China Sea. Geoscience Frontiers, 3(3), 301-316. https://doi.org/10.1016/j.gsf.2011.11.014 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90505 | - |
dc.description.abstract | 海床逸氣是一種常見的地質現象,氣體來源可能來自地層中天然氣水合物的解離以及火成活動的氣體釋放,主要組成為烷類和二氧化碳,並由其來源處沿著地層裂隙移棲至海水層,最終逸散到大氣中,這個過程除了可能加劇全球氣候變遷之外,也會影響海床的穩定性,進而增加海域地質災害的風險。目前海床逸氣的紀錄主要來自研究船上其他觀測的副產物,例如多音束測深儀在探勘地形時所觀察到的海床氣焰,或是使用水下探測載具時直接觀察到海床逸散的氣泡。然而,如何有效監測海床逸氣在空間和時間上的變化,並探討其控制因子及評估相關風險,實為亟待解決的挑戰。本研究旨在透過海底地震儀的紀錄,分析海床逸氣所產生的氣泡訊號。氣體沿著地層裂隙移棲至沉積物與海水層的交界處,其膨脹所產生的微小爆裂會以地震SH波的形式傳遞到附近的海底地震儀,產生高頻率、單頻振動、衰減快且時長約1到4秒的訊號。本研究於2007、2008和2011年佈放在南海北部的海底地震儀紀錄中發現大量的氣泡訊號,故使用以長短期記憶神經網路作為主要架構的機器學習模型,從原始時序資料提取原始波形、時頻圖和波形包絡線等特徵進行訓練並辨識氣泡訊號以進行量化分析。結果顯示,大陸斜坡區域的氣泡數量與水深呈負相關,推測其原因為垂直荷重的差異。但在水深超過3500公尺的海盆中,多數氣泡訊號集中在海盆東側,可能與板塊隱沒的彎曲所造成之裂隙和此區域的火成活動有關。本研究也發現沿著測站佈設方向其訊號峰值有逐漸延遲的趨勢,原因可能為一具方向性的擾動,推測與海洋內部波動如內波有關。此外,氣泡訊號的峰值出現時間於部分測站與潮汐週期相關,顯示潮汐所造成的壓力差也可能觸發海床逸氣。綜合以上,本研究成功透過機器學習快速且自動化辨識海底地震儀中的海床逸氣訊號,並藉由觀察其在時空上之變化探討其控制因子,使大範圍的監測成為可能,未來將可有助於氣體排放監測以及區域地質災害的風險評估。 | zh_TW |
dc.description.abstract | Seafloor gas emissions, mainly composed of alkanes and carbon dioxide, are a common geological phenomenon. These gases, typically originating from the dissociation of gas hydrates or volcanic activities, may migrate through fractures into seawater before eventually escaping into the atmosphere. The released gases and the entire process may exert a significant influence on global climate and impact on seafloor stability, increasing the risk of geological disasters. The observation of seafloor gas emissions is typically derived from shipboard surveys, such as using multibeam echosounders to observe gas flares or employing underwater remotely operated vehicles to directly observe gas bubbles. However, such approach may become impractical when continuous and comprehensive monitoring is required to observe the spatial and temporal variations of seafloor gas emissions. This study aims to analyze the bubble signals generated by seafloor gas emissions using records from ocean bottom seismometers (OBS). When gas migrates through fractures into the interface between sediment and seawater, the expansion results in tiny bursts that propagate as seismic SH waves to nearby OBS stations, producing high and single-frequency oscillations with rapid decay and a duration of approximately 1 to 4 seconds. Numerous bubble signals were discovered in the OBS records deployed in the northern South China Sea during 2007, 2008, and 2011. To address this, a machine learning model based on Long Short-Term Memory (LSTM) algorithm was utilized by using the extracted features from the original time-series data, allowing for the identification of bubble signals and the follow-up discussion. The results show that the amount of bubble signals on the continental slope decreased with the increase of water depth, likely due to variations in vertical loading. However, in the deeper abyssal basins exceeding 3500 meters, most bubble signals were concentrated on the eastern side, possibly linked to tension fractures caused by subducting plate bending or volcanic activities in the region. The research also revealed that a gradual time delay in peak occurrence along the direction of OBS deployment was observed, possibly attributed to directional disturbances associated with internal oceanic waves, such as internal waves. Moreover, the peak occurrence time of bubble signals at certain sites correlated with tidal cycles, suggesting that tidal-induced pressure differences could trigger seafloor gas emissions. In conclusion, this study effectively utilized machine learning to automatically identify seafloor gas emission signals from OBS data, shedding new light on their spatiotemporal distributions and controlling factors in the northern South China Sea. These findings provide valuable insights for monitoring seafloor gas emissions and understanding their environmental implications, which are crucial for the related risk assessments. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:23:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:23:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究動機―海床逸氣現象 1 1.2 研究方法―機器學習 5 1.3 研究目的 7 1.4 本文架構 8 第二章 研究區域與資料 9 2.1 南海北部地質背景 9 2.2 海底地震儀資料 12 第三章 模型訓練原理 21 3.1 長短期記憶 21 3.2 模型架構 23 第四章 資料處理 25 4.1 資料前處理 25 4.1.1 挑選資料 25 4.1.2 切割時間窗 25 4.1.3 特徵提取 26 4.2 資料後處理 30 4.2.1 訊號辨識之準確性 30 4.2.2 修正模型 31 4.2.3 數值整合 32 第五章 結果與討論 37 5.1 氣泡訊號數量的空間分布 37 5.2 氣泡訊號數量的時空傳遞 44 5.3 氣泡訊號與潮汐關係 49 第六章 結論 55 參考資料 57 附錄 66 附錄一:測站資訊 66 附錄二:各測站氣泡訊號數量對時間的分布與潮汐的關係圖 69 | - |
dc.language.iso | zh_TW | - |
dc.title | 南海北部海床逸氣的氣泡訊號:應用機器學習分析海底地震儀紀錄 | zh_TW |
dc.title | Screening Gas Bubble Signals in the Northern South China Sea: An Application of Machine Learning Algorithms with Ocean Bottom Seismometer Data | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 黃致展 | zh_TW |
dc.contributor.coadvisor | Jyh-Jaan Huang | en |
dc.contributor.oralexamcommittee | 傅慶州;柯彥廷 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Chou Fu;Yen-Ting Ko | en |
dc.subject.keyword | 海床逸氣,海底地震儀,氣泡訊號,天然氣水合物,機器學習,南海北坡, | zh_TW |
dc.subject.keyword | seafloor gas emission,ocean bottom seismometer,bubble signal,gas hydrate,machine learning,Northern South China Sea, | en |
dc.relation.page | 75 | - |
dc.identifier.doi | 10.6342/NTU202302124 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2026-08-04 | 8.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。