請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭重顯 | zh_TW |
| dc.contributor.advisor | Chung-Hsien Kuo | en |
| dc.contributor.author | 蘇裕宸 | zh_TW |
| dc.contributor.author | Yu-Chen Su | en |
| dc.date.accessioned | 2023-10-03T16:22:35Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-28 | - |
| dc.identifier.citation | [1] P. Sears and P. Dupont, "A Steerable Needle Technology Using Curved Concentric Tubes," in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006 2006, pp. 2850-2856, doi: 10.1109/IROS.2006.282072.
[2] C. Bedell, J. Lock, A. Gosline, and P. E. Dupont, "Design Optimization of Concentric Tube Robots Based on Task and Anatomical Constraints," in 2011 IEEE International Conference on Robotics and Automation, 9-13 May 2011 2011, pp. 398-403, doi: 10.1109/ICRA.2011.5979960. [3] L. G. Torres and R. Alterovitz, "Motion Planning for Concentric Tube Robots using Mechanics-based Models," in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 25-30 Sept. 2011 2011, pp. 5153-5159, doi: 10.1109/IROS.2011.6095168. [4] L. G. Torres, R. J. Webster, and R. Alterovitz, "Task-oriented Design of Concentric Tube Robots using Mechanics-based Models," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 7-12 Oct. 2012 2012, pp. 4449-4455, doi: 10.1109/IROS.2012.6386041. [5] J. Burgner, P. J. Swaney, R. A. Lathrop, K. D. Weaver, and R. J. Webster, "Debulking From Within: A Robotic Steerable Cannula for Intracerebral Hemorrhage Evacuation," IEEE Transactions on Biomedical Engineering, vol. 60, no. 9, pp. 2567-2575, 2013, doi: 10.1109/TBME.2013.2260860. [6] T. K. Morimoto and A. M. Okamura, "Design of 3-D Printed Concentric Tube Robots," IEEE Trans Robot, vol. 32, no. 6, pp. 1419-1430, Dec 2016, doi: 10.1109/TRO.2016.2602368. [7] R. Xu, "Modeling, Sensorization and Control of Concentric-Tube Robots," Ph.D., The University of Western Ontario (Canada), Canada -- Ontario, CA, 29244690, 2016. [8] H. B. Gilbert and R. J. Webster, "Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots," IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 98-105, 2016, doi: 10.1109/LRA.2015.2507706. [9] J. S. Kim, D. Y. Lee, K. Kim, S. Kang, and K. J. Cho, "Toward a Solution to the Snapping Problem in a Concentric-Tube Continuum Robot: Grooved tubes with anisotropy," in 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May-7 June 2014 2014, pp. 5871-5876, doi: 10.1109/ICRA.2014.6907723. [10] S. Esakkiappan, B. Shirinzadeh, and W. Wei, "Development of a Cost-effective Actuation Unit for three DOF Concentric Tube Robot in Minimally Invasive Surgery," in 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 8-12 July 2019 2019, pp. 1013-1018, doi: 10.1109/AIM.2019.8868571. [11] R. J. Hendrick, S. D. Herrell, and R. J. Webster, "A Multi-arm Hand-held Robotic System for Transurethral laser Prostate Surgery," in 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May-7 June 2014 2014, pp. 2850-2855, doi: 10.1109/ICRA.2014.6907268. [12] H. Alfalahi, F. Renda, and C. Stefanini, "Concentric Tube Robots for Minimally Invasive Surgery: Current Applications and Future Opportunities," IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 3, pp. 410-424, 2020, doi: 10.1109/TMRB.2020.3000899. [13] M. N. Boushaki, "Design Optimization and Control for Concentric Tube Robot in Assisted Single-Access Laparoscopic Surgery. (Optimisation de la conception et commande de robot à tubes concentriques pour la chirurgie laparoscopique par accès unique)," 2016. [14] P. Sears and P. E. Dupont, "Inverse Kinematics of Concentric Tube Steerable Needles," in Proceedings 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007 2007, pp. 1887-1892, doi: 10.1109/ROBOT.2007.363597. [15] P. E. Dupont, J. Lock, and E. Butler, "Torsional kinematic model for concentric tube robots," in 2009 IEEE International Conference on Robotics and Automation, 12-17 May 2009 2009, pp. 3851-3858, doi: 10.1109/ROBOT.2009.5152649. [16] R. J. Webster, J. M. Romano, and N. J. Cowan, "Mechanics of Precurved-Tube Continuum Robots," IEEE Transactions on Robotics, vol. 25, no. 1, pp. 67-78, 2009, doi: 10.1109/tro.2008.2006868. [17] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, "Design and Control of Concentric-Tube Robots," IEEE Trans Robot, vol. 26, no. 2, pp. 209-225, Apr 1 2010, doi: 10.1109/TRO.2009.2035740. [18] D. C. Rucker, B. A. Jones, and I. R. J. Webster, "A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots," IEEE Transactions on Robotics, vol. 26, no. 5, pp. 769-780, 2010, doi: 10.1109/TRO.2010.2062570. [19] S. Bai and C. Xing, "Shape Modeling of a Concentric-Tube Continuum Robot," in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 11-14 Dec. 2012 2012, pp. 116-121, doi: 10.1109/ROBIO.2012.6490953. [20] R. Xu, A. Asadian, A. S. Naidu, and R. V. Patel, "Position Control of Cconcentric-Tube Continuum Robots using a Modified Jacobian-based Approach," in 2013 IEEE International Conference on Robotics and Automation, 6-10 May 2013 2013, pp. 5813-5818, doi: 10.1109/ICRA.2013.6631413. [21] J. Ha, F. C. Park, and P. E. Dupont, "Elastic Stability of Concentric Tube Robots Subject to External Loads," IEEE Trans Biomed Eng, vol. 63, no. 6, pp. 1116-28, Jun 2016, doi: 10.1109/TBME.2015.2483560. [22] J. Wang, D. Zhang, T. Ma, S. Song, W. Liu, and M. Q. H. Meng, "A New Solution for the Inverse Kinematics of Concentric-Tube Robots," in 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), 25-27 Oct. 2018 2018, pp. 234-239, doi: 10.1109/CBS.2018.8612283. [23] D. Zhang, J. Wang, X. Yang, S. Song, and M. Q. H. Meng, "RRT*-smooth Algorithm Applied to Motion Planning of Concentric Tube Robots," in 2018 IEEE International Conference on Information and Automation (ICIA), 11-13 Aug. 2018 2018, pp. 487-493, doi: 10.1109/ICInfA.2018.8812514. [24] S. M. H. Sadati, Z. Mitros, R. Henry, L. Zeng, L. d. Cruz, and C. Bergeles, "Real-Time Dynamics of Concentric Tube Robots With Reduced-Order Kinematics Based on Shape Interpolation," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5671-5678, 2022, doi: 10.1109/LRA.2022.3151399. [25] B. Thamo, F. Alambeigi, K. Dhaliwal, and M. Khadem, "A Hybrid Dual Jacobian Approach for Autonomous Control of Concentric Tube Robots in Unknown Constrained Environments," presented at the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021. [26] C. Messer, A. T. Mathew, N. Mladenovic, and F. Renda, "CTR DaPP: A Python Application for Design and Path Planning of Variable-strain Concentric Tube Robots," presented at the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 2022. [27] B. Thamo, D. Hanley, K. Dhaliwal, and M. Khadem, "Data-Driven Steering of Concentric Tube Robots in Unknown Environments via Dynamic Mode Decomposition," IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 856-863, 2023, doi: 10.1109/lra.2022.3231490. [28] R. Grassmann, V. Modes, and J. Burgner-Kahrs, "Learning the Forward and Inverse Kinematics of a 6-DOF Concentric Tube Continuum Robot in SE(3)," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1-5 Oct. 2018 2018, pp. 5125-5132, doi: 10.1109/IROS.2018.8594451. [29] A. Kuntz, A. Sethi, R. J. Webster, 3rd, and R. Alterovitz, "Learning the Complete Shape of Concentric Tube Robots," IEEE Trans Med Robot Bionics, vol. 2, no. 2, pp. 140-147, May 2020, doi: 10.1109/tmrb.2020.2974523. [30] K. Iyengar and D. Stoyanov, "Deep Reinforcement Learning for Concentric Tube Robot Control with a Goal-Based Curriculum," presented at the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021. [31] R. M. Grassmann, R. Z. Chen, N. Liang, and J. Burgner-Kahrs, "A Dataset and Benchmark for Learning the Kinematics of Concentric Tube Continuum Robots," presented at the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022. [32] Y. Lu, C. Zhang, S. Song, and M. Q. H. Meng, "Precise Motion Control of Concentric-Tbe Robot Based on Visual Servoing," in 2017 IEEE International Conference on Information and Automation (ICIA), 18-20 July 2017 2017, pp. 299-304, doi: 10.1109/ICInfA.2017.8078923. [33] A. V. Kudryavtsev et al., "Eye-in-Hand Visual Servoing of Concentric Tube Robots," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2315-2321, 2018, doi: 10.1109/lra.2018.2807592. [34] C. Girerd, A. V. Kudryavtsev, P. Rougeot, P. Renaud, K. Rabenorosoa, and B. Tamadazte, "SLAM-Based Follow-the-Leader Deployment of Concentric Tube Robots," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 548-555, 2020, doi: 10.1109/LRA.2019.2963821. [35] X. Yang, G. Cen, C. Zhang, J. Wang, S. Song, and M. Q. H. Meng, "Visual Servoing Control of Concentric-tube Robot with Jacobian Matrix Estimation," presented at the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2021. [36] F. Y. Lin, C. Bergeles, and G. Z. Yang, "Biometry-based Concentric Tubes Robot for Vitreoretinal Surgery," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25-29 Aug. 2015 2015, pp. 5280-5284, doi: 10.1109/EMBC.2015.7319583. [37] M. Nokata and T. Omori, "Development of Catheter Grasping Forceps by Metal Injection Molding," in 2017 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 3-6 Dec. 2017 2017, pp. 1-5, doi: 10.1109/MHS.2017.8305202. [38] M. Nokata and K. Ichiraku, "Design and Production Method of Diameter 1mm ONE PART Grasping Forceps for Catheter," in 2018 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 9-12 Dec. 2018 2018, pp. 1-4, doi: 10.1109/MHS.2018.8886963. [39] P. J. Swaney, P. A. York, H. B. Gilbert, J. Burgner-Kahrs, and R. J. Webster, "Design, Fabrication, and Testing of a Needle-Sized Wrist for Surgical Instruments," Journal of medical devices, vol. 11 1, pp. 0145011-145019, 2017. [40] R. Xu and R. V. Patel, "A Fast Torsionally Compliant Kinematic Model of Concentric-Tube Robots," in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 28 Aug.-1 Sept. 2012 2012, pp. 904-907, doi: 10.1109/EMBC.2012.6346078. [41] C. Girerd, K. Rabenorosoa, and P. Renaud, "Combining Tube Design and Simple Kinematic Strategy for Follow-the-Leader Deployment of Concentric Tube Robots," in Advances in Robot Kinematics, 2016. [42] G. Nakano, "Efficient DLT-Based Method for Solving PnP, PnPf, and PnPfr Problems," IEICE Transactions on Information and Systems, vol. E104.D, pp. 1467-1477, 09/01 2021, doi: 10.1587/transinf.2020EDP7208. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90502 | - |
| dc.description.abstract | 同心管機器人(Concentric Tube Robot;CTR)是一種軟性連續型機器人,由具直徑差異之彈性預彎曲同心圓管相互插入組成,並透過旋轉與平移行為進行運動控制。因其具有小體積、高靈活性等特點,常被應用於醫療手術與工業探勘中。本研究設計了一組三支鎳鈦合金圓管具6自由度之同心管機器人,首先分析基於Cosserat Rod理論的同心管機器人動力學模型,發現端點均方根誤差(Root Mean Square Error;RMSE)約為機器人總長6.3%(21mm),其原因在於模型採用了過多簡化假設,例如材料均勻和忽略摩擦力等,導致在實際應用中的誤差過大,從而限制了該方法在實際應用中的可行性和效果。
為了解決基於Cosserat Rod理論於同心管機器人動力學模型中存在的誤差問題,本研究採用資料驅動的深度神經網路(Deep Neural Network;DNN)運動學方法來改進模型的精確性和可行性,透過預蒐集資料集進行訓練,建立一個包含15層的全連接隱藏層,每層包含128個神經元的深度神經網路正向運動學模型,並於測試資料集中得到端點均方根誤差為1.03mm之大幅改善。之後,本文也提出了一種結合深度神經網路運動學和Jacobian的軌跡追蹤,實驗結果顯示,於2×2公分正方形軌跡中該方法的端點均方根誤差為1.064mm,相較具有穩定性與準確性。透過ZED 2i立體相機搭配自設計微型夾爪進行視覺追蹤定位目標物抓取,實驗之改善證明了使用結合深度神經網路運動學的Jacobian控制方法在同心管機器人具有實際應用價值。在實驗中,無航點規劃和有航點規劃操作成功率達到72%和88%。這些結果表明,本研究所提出的基於深度神經網路的Jacobian控制方法在實際應用中具有可行性和很高的精度,能夠有效提高同心管機器人在夾取任務中的控制性能。 最後,實驗比較兩種運動學方法和OptiTrack動作捕捉系統回授控制方法,在夾取任務中的總移動距離、執行時間和最後端點誤差的性能表現。運動學方法在沒有即時夾爪夾取點位置回授的情況,移動的總距離相對是比較短的,執行時間也是相對較少,但是最後端點誤差就相對較大。其中,Cosserat Rod 動力學方法中移動距離雖然是最短的,但平均最後端點誤差高達11.03mm,這將會造成夾取失敗。而DNN運動學模型因為有比較精準的運動學,所以在夾爪夾取點位置的估測上面相對比較準確,因此最後端點平均誤差在2.38mm,是可以進行有效地夾取,但這樣的誤差值有可能導致部分的夾取任務失敗。而無準確端點運動學模型狀態下,使用OptiTrack動作捕捉系統即時回授夾爪夾取點位置,在三種實驗的條件均能達到相當好的最後端點誤差,其誤差數值落在1.49-1.92mm之間,三種實驗的夾取成功率都可以確實達成。但是可以發現在沒有運動學輔助之下,夾取任務的執行時間和總移動距離是最長的,這並不符合實際機器手臂的應用。因此與運動學方法輔助使用,除了有效減少夾取的誤差,總移動距離和執行時間也大幅縮短,並提升整體夾取表現。 | zh_TW |
| dc.description.abstract | The concentric tube robot(CTR) is a type of soft continuum robot, constructed by inserting pre-curved different diameters elastic tubes into each other, with each tube is controlled by rotation and translation. Due to its small size and high flexibility, it is frequently used in minimally invasive surgeries and industrial exploration. This study developed a set of concentric tube robots with three Nitinol tubes with 6 degrees of freedom. First of all, the kinetics model of concentric tube robots based on Cosserat Rod theory was analyzed, and the root mean square error (RMSE) of tip position was 21mm, indicating that the Cosserat Rod kinetics model adopted simplification of assumptions, such as homogeneous material and ignoring friction, etc., leading to excessive errors in practical applications.
In order to improve the kinematics model accuracy of the concentric tube robot, this study adopts the deep neural network (DNN) data-driven method to improve the accuracy of the kinematics model. The deep neural network includes 15 fully connected hidden layers. Each layer consists of 128 neurons, and tip position RMSE is 1.03mm in the test dataset. Then a method based on deep neural network kinematics Jacobian is proposed for waypoint planning. According to the experimental results, the RMSE of this method is 1.064mm in a 2×2 cm square trajectory, which is stable and accurate. Through the ZED 2i stereo camera and the self-designed micro gripper in the grasping task, the success rate for the operation without waypoint planning and with waypoint planning is 72% and 88%. These results indicated that the DNN-based kinematics Jacobian method proposed in this study is feasible and highly accurate in practical applications, and it can effectively improve the control performance of concentric tube robots in grasping tasks. Finally, the experiment compared the total movement distance, execution time, and tip position error in a grasping task using two different kinematic methods and the OptiTrack motion capture system feedback control method. Without real-time feedback on the position of the gripper grasping point, the kinematic methods had relatively shorter total movement distances and less execution time, but a higher tip position error. Among them, while the Cosserat Rod kinetics method had the shortest movement distance, its average tip position error was 11.03mm, which led to grasping failure. The DNN kinematics model had more precise position and thus provided a more accurate estimation of the gripper grasping point position. Consequently, its average tip position error was 2.38mm, which allowed for effective grasping, but this level of error might still result in some grasping task failures. In the absence of an accurate tip position kinematics model, using the OptiTrack motion capture system to provide real-time feedback on the position of the gripper grasping point resulted in great tip position error performance under three experimental conditions, with error values ranging from 1.49mm to 1.92mm. At this time, the success rate of the grasping tasks in these three experiments can be reliably achieved. However, it was noted that without the assistance of kinematics, the execution time and total movement distance for the grasping task were the longest, which is not in line with the practical application. Therefore, integrating the kinematics method not only effectively reduces grasping errors, but also greatly shortens the total movement distance and execution time, and improves overall grasping performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:22:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:22:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 v 目錄 vii 圖目錄 x 表目錄 xiv 符號說明 xvi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 同心管機器人設計 2 1.2.2 同心管機器人運動控制 3 1.2.3 深度學習應用於同心管機器人 4 1.2.4 視覺控制應用 5 1.2.5 微型夾爪設計 5 1.3 論文架構 7 第二章 系統架構 8 2.1 系統架構與流程 8 2.2 同心管機器人機構設計與硬體架構 10 2.2.1 自主模具生產之管材成形 10 2.2.2 運動機構設計 12 2.2.3 線驅動微型夾爪模組設計 20 2.2.4 視覺追蹤相機 23 2.2.5 通訊協議 24 2.2.6 神經網路訓練平台 25 2.2.7 同心管機器人組裝 26 第三章 同心管機器人動力學模型 28 3.1 前言 28 3.2 動力學模型 29 3.2.1 Cosserat Rod 理論 29 3.2.2 扭轉模型計算 31 3.2.3 模型管長分段 32 3.2.4 曲率合成計算 34 3.2.5 同心管機器人材料與尺寸設計分析 37 3.3 基於Cosserat Rod理論的Jacobian控制方法 39 3.3.1 軌跡規劃 41 3.3.2 Jacobian方法模擬實驗 44 第四章 深度神經網路之運動學模型預測 57 4.1 前言 57 4.2 神經網路基本原理及模型設計 57 4.2.1 梯度下降算法 60 4.3 基於深度神經網路的Jacobian控制方法 61 第五章 視覺追蹤系統 62 5.1 影像處理基本理論 62 5.1.1 型態運算(Morphology operator) 62 5.1.2 幾何特徵(Geometric feature) 64 5.1.3 目標物中心追蹤 65 5.2 立體相機座標系轉換 69 5.2.1 像素座標系與相機點雲座標系轉換 69 5.2.2 相機點雲座標系與世界座標系轉換 70 5.2.3 世界座標系與機器人座標系轉換 73 第六章 實驗結果與分析 75 6.1 動力學模型驗證實驗 80 6.2 深度神經網路運動學模型預測驗證實驗 82 6.2.1 資料集蒐集 82 6.2.2 資料增強(Data Augmentation) 82 6.2.3 模型設計 83 6.2.4 訓練結果 85 6.3 軌跡追蹤控制實驗 87 6.3.1 正方形(2×2公分)軌跡 88 6.3.2 直線(13.5公分)軌跡 91 6.4 座標轉換與定位實驗 94 6.5 微型夾爪實驗任務 96 6.5.1 Cosserat Rod 動力學方法 101 6.5.2 DNN運動學方法 103 6.6 OptiTrack動作捕捉系統回授控制 106 第七章 結論與未來展望 110 7.1 結論 110 7.2 未來展望 112 參考文獻 113 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 同心管機器人 | zh_TW |
| dc.subject | 深度神經網路運動學 | zh_TW |
| dc.subject | Cosserat Rod理論 | zh_TW |
| dc.subject | Jacobian方法 | zh_TW |
| dc.subject | 視覺追蹤 | zh_TW |
| dc.subject | Cosserat Rod Theory | en |
| dc.subject | Deep Neural Network Kinematics | en |
| dc.subject | Jacobian Method | en |
| dc.subject | Concentric Tube Robot | en |
| dc.subject | Image Servoing | en |
| dc.title | 基於深度神經網路之同心管機器人運動控制與視覺追蹤應用 | zh_TW |
| dc.title | Motion Control and Image Servoing Applications of a Concentric Tube Robot with Deep Neural Networks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃漢邦;劉益宏;顏炳郎;洪碩穗 | zh_TW |
| dc.contributor.oralexamcommittee | Han-Pang Huang;Yi-Hung Liu;Ping-Lang Yen;Shuo-Sui Hung | en |
| dc.subject.keyword | 同心管機器人,Cosserat Rod理論,深度神經網路運動學,Jacobian方法,視覺追蹤, | zh_TW |
| dc.subject.keyword | Concentric Tube Robot,Cosserat Rod Theory,Deep Neural Network Kinematics,Jacobian Method,Image Servoing, | en |
| dc.relation.page | 117 | - |
| dc.identifier.doi | 10.6342/NTU202301055 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-06-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2028-05-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
