請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90499
標題: | 工具機動態分析於高速精加工之應用 Machine Tool Dynamic Analysis for High-Speed Precision Machining |
作者: | 郭家卉 Chia-Hui Kuo |
指導教授: | 張培仁 Pei-Zen Chang |
共同指導教授: | 李尉彰 Wei-Chang Li |
關鍵字: | 動態分析,表面粗糙度,切削力預測,銑床,切削參數, Dynamic analysis,Surface roughness,Cutting force prediction,Milling machine,Cutting parameters, |
出版年 : | 2023 |
學位: | 碩士 |
摘要: | 台灣工具機產業主要依賴出口,面對全球供應鏈減碳壓力和國際碳排放管制日益嚴格的挑戰,工具機產業必須迅速進行轉型以保持競爭力。其中,高效率加工是利用數位雙生模擬和數位技術來優化加工過程,從評估步驟、工具選擇到參數設定,以提高生產效率。為了實現高效率加工,需考慮完全穩定邊界以上至極限切削深度的區域。然而,傳統觀點認為在凸點內進行加工可能導致振動、刀具損壞和工件表面粗糙度增加等問題。為了解決此問題,已有許多文獻提出表面粗糙度預測模型。然而,凸點加工的動態行為及表面粗糙度仍鮮少被實際運用,這是實現高效率加工的關鍵因素。因此,本研究探討系統動態特性對表面品質的影響。以模擬的方式預測刀尖點隨不同切削參數之動態響應,再通過實驗測量值探討振動對表面粗糙度的影響。實驗結果顯示切削深度的增加會導致表面粗糙度值的增加,並與預測的刀尖點振動量呈正相關線性關係。透過這些分析,我們已達成了理解機台的加工品質能力,並能根據加工品質需求調整加工參數以實現高效加工同時滿足表面粗糙度的要求。 The machine tool industry in Taiwan heavily depends on exports and is currently encountering significant challenges arising from the mounting demand to reduce carbon emissions within global supply chains and the implementation of stricter international regulations on carbon emissions. To maintain competitiveness, the industry must undergo a rapid transformation. One crucial aspect of this transformation is achieving high-efficiency machining, which involves optimizing the machining process using digital twin simulations and digital technologies, ranging from evaluation steps and tool selection to parameter settings, in order to enhance production efficiency. To achieve high-efficiency machining, it is necessary to consider the region from just above the fully stable region to the extreme cutting depths. However, traditional perspectives suggest that machining within the concave region may lead to problems such as vibration, tool damage, and increased surface roughness. To address this issue, numerous studies have proposed surface roughness prediction models. However, the dynamic behavior and surface roughness of concave machining have been rarely applied in practice, which is a critical factor for achieving high-efficiency machining. Therefore, this study investigates the influence of system dynamic characteristics on surface quality. The dynamic response of the tool tip is predicted using simulation for different cutting parameters, and the impact of vibration on surface roughness is examined through experimental measurements. The experimental results demonstrate that increasing the cutting depth leads to an increase in surface roughness values, which exhibit a positive linear relationship with the predicted tool tip vibration. Through these analyses, we have gained an understanding of the machining quality capability of the machine tool and can adjust machining parameters based on the requirements of machining quality to achieve high-efficiency machining while meeting the surface roughness requirements. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90499 |
DOI: | 10.6342/NTU202303476 |
全文授權: | 同意授權(全球公開) |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-08-07 | 9.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。