Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90498
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李培芬 | zh_TW |
dc.contributor.advisor | Pei-Fen Lee | en |
dc.contributor.author | 柯啓樂 | zh_TW |
dc.contributor.author | Khe-Lok Kua | en |
dc.date.accessioned | 2023-10-03T16:21:27Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-07 | - |
dc.identifier.citation | Araujo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling [Article; Proceedings Paper]. Journal of Biogeography, 33(10), 1677-1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x
Austin, M., & Cunningham, R. (1981). Observational analysis of environmental gradients. Proc. Ecol. Soc. Aust., 11, 109-119. Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x Benkendorf, D. J., & Hawkins, C. P. (2020). Effects of sample size and network depth on a deep learning approach to species distribution modeling [Article]. Ecological Informatics, 60, 8, Article 101137. https://doi.org/10.1016/j.ecoinf.2020.101137 Blanco, A., Larrinaga, A. R., Neto, J. M., Troncoso, J., Mendez, G., Dominguez-Lapido, P., Ovejero, A., Pereira, L., Mouga, T. M., Gaspar, R., Martinez, B., Lemos, M. F. L., & Olabarria, C. (2021). Spotting intruders: Species distribution models for managing invasive intertidal macroalgae [Article]. Journal of Environmental Management, 281, 11, Article 111861. https://doi.org/10.1016/j.jenvman.2020.111861 Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini, G., & White, A. E. (2022). Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 13(8), 1640-1660. https://doi.org/10.1111/2041-210X.13901 Botella, C., Joly, A., Bonnet, P., Monestiez, P., & Munoz, F. (2018). A Deep Learning Approach to Species Distribution Modelling. Springer. https://doi.org/10.1007/978-3-319-76445-0_10 Chen, D., Xue, Y., Chen, S., Fink, D., & Gomes, C. (2016). Deep Multi-Species Embedding. arXiv:1609.09353. Retrieved September 01, 2016, from https://ui.adsabs.harvard.edu/abs/2016arXiv160909353C Chen, W.-J. (2020). 臺灣陸域環境因子多時序資料集 Version 2020-06-10T03:49:31.620546). https://pid.depositar.io/ark:37281/k5d4z511n Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learning in ecology. Methods in Ecology and Evolution, 10(10), 1632-1644. https://doi.org/10.1111/2041-210X.13256 Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A., & Kaiser, E. W. (2013). Weekend bias in Citizen Science data reporting: implications for phenology studies. International Journal of Biometeorology, 57(5), 715-720. https://doi.org/10.1007/s00484-012-0598-7 De Marco, P. J., & Nóbrega, C. C. (2018). Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS One, 13(9), e0202403. https://doi.org/10.1371/journal.pone.0202403 Deneu, B., Servajean, M., Bonnet, P., Botella, C., Munoz, F., & Joly, A. (2021). Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment [Article]. Plos Computational Biology, 17(4), 21, Article e1008856. https://doi.org/10.1371/journal.pcbi.1008856 Didan, K. (2015). MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13A1.006 DiMiceli, C., Carroll, M., Sohlberg, R., Kim, D., Kelly, M., & Townshend, J. (2015). MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD44B.006 Ding, T.-S., Juan, C.-S., Lin, R.-S., Tsai, Y.-J., Wu, J.-L., Wu, J., & Yang, Y.-H. (2023). The 2023 TWBF Checklist of the Birds of Taiwan. In. Taipei, Taiwan: Taiwan Wild Bird Federation. Dormann, C. F. (2007). Effects of incorporating spatial autocorrelation into the analysis of species distribution data [Review]. Global Ecology and Biogeography, 16(2), 129-138. https://doi.org/10.1111/j.1466-8238.2006.00279.x Eduardo, A. A., Martinez, P. A., Gouveia, S. F., Santos, F. D., de Aragao, W. S., Morales-Barbero, J., Kerber, L., & Liparini, A. (2018). Extending the paleontology-biogeography reciprocity with SDMs: Exploring models and data in reducing fossil taxonomic uncertainty [Article]. PLoS One, 13(3), 15, Article e0194725. https://doi.org/10.1371/journal.pone.0194725 Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., . . . E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 Elton, C. (1927). Animal ecology. Sidgwick and Jackson. Falk, T., Mai, D., Bensch, R., Cicek, O., Abdulkadir, A., Marrakchi, Y., Bohm, A., Deubner, J., Jackel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T. L., Prinz, M., Palme, K., Simons, M., . . . Ronneberger, O. (2019). U-Net: deep learning for cell counting, detection, and morphometry [Article]. Nature Methods, 16(1), 67-+. https://doi.org/10.1038/s41592-018-0261-2 Feeley, K. J., & Silman, M. R. (2011). Keep collecting: accurate species distribution modelling requires more collections than previously thought. Diversity and Distributions, 17(6), 1132-1140. https://doi.org/10.1111/j.1472-4642.2011.00813.x Feldman, M. J., Imbeau, L., Marchand, P., Mazerolle, M. J., Darveau, M., & Fenton, N. J. (2021). Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review. PLoS One, 16(3), e0234587. https://doi.org/10.1371/journal.pone.0234587 Ferreira, M. T., Cardoso, P., Borges, P. A., Gabriel, R., de Azevedo, E. B., Reis, F., Araujo, M. B., & Elias, R. B. (2016). Effects of climate change on the distribution of indigenous species in oceanic islands (Azores) [Article]. Climatic Change, 138(3-4), 603-615. https://doi.org/10.1007/s10584-016-1754-6 Fournier, A., Barbet-Massin, M., Rome, Q., & Courchamp, F. (2017). Predicting species distribution combining multi-scale drivers [Article]. Global Ecology and Conservation, 12, 215-226. https://doi.org/10.1016/j.gecco.2017.11.002 Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography [Editorial Material]. Diversity and Distributions, 16(3), 321-330. https://doi.org/10.1111/j.1472-4642.2010.00641.x Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006 Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126-1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x GBIF.org. (2023). GBIF Home Page. https://www.gbif.org Gherghel, I., Brischoux, F., & Papes, M. (2018). Using biotic interactions in broad-scale estimates of species' distributions [Article]. Journal of Biogeography, 45(9), 2216-2225. https://doi.org/10.1111/jbi.13361 Gobeyn, S., Mouton, A. M., Cord, A. F., Kaim, A., Volk, M., & Goethals, P. L. M. (2019). Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecological Modelling, 392, 179-195. https://doi.org/10.1016/j.ecolmodel.2018.11.013 Grinnell, J. (1917). The Niche-Relationships of the California Thrasher. The Auk, 34(4), 427-433. https://doi.org/10.2307/4072271 Gu, Z. W., Cheng, J., Fu, H. Z., Zhou, K., Hao, H. Y., Zhao, Y. T., Zhang, T. Y., Gao, S. H., & Liu, J. (2019). CE-Net: Context Encoder Network for 2D Medical Image Segmentation [Article]. Ieee Transactions on Medical Imaging, 38(10), 2281-2292. https://doi.org/10.1109/tmi.2019.2903562 Guillera-Arroita, G. (2017). Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography, 40(2), 281-295. https://doi.org/https://doi.org/10.1111/ecog.02445 Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., McCarthy, M. A., Tingley, R., & Wintle, B. A. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3), 276-292. https://doi.org/10.1111/geb.12268 Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). What matters for predicting the occurrences of trees: Techniques, data, or species' characteristics? [Article]. Ecological Monographs, 77(4), 615-630. https://doi.org/10.1890/06-1060.1 Hallman, T. A., & Robinson, W. D. (2020). Comparing multi- and single-scale species distribution and abundance models built with the boosted regression tree algorithm. Landscape Ecology, 35(5), 1161-1174. https://doi.org/10.1007/s10980-020-01007-7 Harris, D. J. (2015). Generating realistic assemblages with a joint species distribution model [Article]. Methods in Ecology and Evolution, 6(4), 465-473. https://doi.org/10.1111/2041-210x.12332 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv:1512.03385. Retrieved December 01, 2015, from https://ui.adsabs.harvard.edu/abs/2015arXiv151203385H Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G., & Körber, J.-H. (2007). Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography, 16(6), 754-763. https://doi.org/10.1111/j.1466-8238.2007.00345.x Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2021). dismo: Species Distribution Modeling. In https://CRAN.R-project.org/package=dismo Hirzel, A. H., Helfer, V., & Metral, F. (2001). Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145(2), 111-121. https://doi.org/https://doi.org/10.1016/S0304-3800(01)00396-9 Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. https://doi.org/10.1101/sqb.1957.022.01.039 Ibtehaz, N., & Rahman, M. S. (2020). MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation [Article]. Neural Networks, 121, 74-87. https://doi.org/10.1016/j.neunet.2019.08.025 Iturbide, M., Bedia, J., Herrera, S., del Hierro, O., Pinto, M., & Gutiérrez, J. M. (2015). A framework for species distribution modelling with improved pseudo-absence generation. Ecological Modelling, 312, 166-174. https://doi.org/10.1016/j.ecolmodel.2015.05.018 Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T., & Holcombe, T. R. (2015). Caveats for correlative species distribution modeling. Ecological Informatics, 29, 6-15. https://doi.org/https://doi.org/10.1016/j.ecoinf.2015.06.007 Jiménez-Valverde, A., & Lobo, J. M. (2007). Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecologica, 31(3), 361-369. https://doi.org/https://doi.org/10.1016/j.actao.2007.02.001 Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 60, 101150. https://doi.org/10.1016/j.ecoinf.2020.101150 Ko, C. Y., Lin, R. S., Ding, T. S., Hsieh, C. H., & Lee, P. F. (2009). Identifying Biodiversity Hotspots by Predictive Models: A Case Study Using Taiwan's Endemic Bird Species [Article]. Zoological Studies, 48(3), 418-431. http://zoolstud.sinica.edu.tw/Journals/48.3/418.pdf Koo, K. A., Park, S. U., Kong, W.-S., Hong, S., Jang, I., & Seo, C. (2017). Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecological Modelling, 353, 17-27. https://doi.org/10.1016/j.ecolmodel.2016.10.007 Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks Advances in Neural Information Processing Systems, https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning [Review]. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 Lee-Yaw, J. A., McCune, J. L., Pironon, S., & Sheth, S. N. (2022). Species distribution models rarely predict the biology of real populations [Review]. Ecography, 2022(6), 16. https://doi.org/10.1111/ecog.05877 Leroy, B., Delsol, R., Hugueny, B., Meynard, C. N., Barhoumi, C., Barbet-Massin, M., & Bellard, C. (2018). Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance [Article]. Journal of Biogeography, 45(9), 1994-2002. https://doi.org/10.1111/jbi.13402 Leroy, B., Meynard, C. N., Bellard, C., & Courchamp, F. (2016). virtualspecies, an R package to generate virtual species distributions. Ecography, 39(6), 599-607. https://doi.org/10.1111/ecog.01388 Li, W. K., & Guo, Q. H. (2013). How to assess the prediction accuracy of species presence-absence models without absence data? [Article]. Ecography, 36(7), 788-799. https://doi.org/10.1111/j.1600-0587.2013.07585.x Liu, C., White, M., & Newell, G. (2011). Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography, 34(2), 232-243. https://doi.org/https://doi.org/10.1111/j.1600-0587.2010.06354.x Lobo, J. M., Jimenez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models [Article]. Global Ecology and Biogeography, 17(2), 145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x Marcer, A., Saez, L., Molowny-Horas, R., Pons, X., & Pino, J. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation [Article]. Biological Conservation, 166, 221-230. https://doi.org/10.1016/j.biocon.2013.07.001 Mertens, A., Swennen, R., Ronsted, N., Vandelook, F., Panis, B., Sachter-Smith, G., Vu, D. T., & Janssens, S. B. (2021). Conservation status assessment of banana crop wild relatives using species distribution modelling [Article]. Diversity and Distributions, 27(4), 729-746. https://doi.org/10.1111/ddi.13233 Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. arXiv:1310.4546. Retrieved October 01, 2013, from https://ui.adsabs.harvard.edu/abs/2013arXiv1310.4546M Miller, J. (2010). Species Distribution Modeling. Geography Compass, 4(6), 490-509. https://doi.org/https://doi.org/10.1111/j.1749-8198.2010.00351.x Miller, J. A. (2012). Species distribution models: Spatial autocorrelation and non-stationarity [Article]. Progress in Physical Geography-Earth and Environment, 36(5), 681-692. https://doi.org/10.1177/0309133312442522 Morelli, F., & Tryjanowski, P. (2015). No species is an island: testing the effects of biotic interactions on models of avian niche occupation [Article]. Ecology and Evolution, 5(3), 759-768. https://doi.org/10.1002/ece3.1387 Mortelliti, A., Amori, G., & Boitani, L. (2010). The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia, 163(2), 535-547. https://doi.org/10.1007/s00442-010-1623-3 NASA JPL. (2020). NASADEM Merged DEM Global 1 arc second V001 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001 Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., Araujo, M. B., Dallas, T., Dunson, D., Elith, J., Foster, S. D., Fox, R., Franklin, J., Godsoe, W., Guisan, A., O'Hara, B., Hill, N. A., Holt, R. D., Hui, F. K. C., . . . Ovaskainen, O. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels [Article]. Ecological Monographs, 89(3), 24, Article e01370. https://doi.org/10.1002/ecm.1370 O'Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. arXiv:1511.08458. Retrieved November 01, 2015, from https://ui.adsabs.harvard.edu/abs/2015arXiv151108458O Osborne, P. E., Foody, G. M., & Suarez-Seoane, S. (2007). Non-stationarity and local approaches to modelling the distributions of wildlife. Diversity and Distributions, 13(3), 313-323. https://doi.org/10.1111/j.1472-4642.2007.00344.x Otso Ovaskainen, & Ilkka Hanski. (2004). From Individual Behavior to Metapopulation Dynamics: Unifying the Patchy Population and Classic Metapopulation Models. The American Naturalist, 164(3), 364-377. https://doi.org/10.1086/423151 Parviainen, M., Marmion, M., Luoto, M., Thuiller, W., & Heikkinen, R. K. (2009). Using summed individual species models and state-of-the-art modelling techniques to identify threatened plant species hotspots [Article]. Biological Conservation, 142(11), 2501-2509. https://doi.org/10.1016/j.biocon.2009.05.030 Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Phillips, S. J., Dudik, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data [Article]. Ecological Applications, 19(1), 181-197. https://doi.org/10.1890/07-2153.1 Pichler, M., & Hartig, F. (2023). Machine learning and deep learning-A review for ecologists [Review]. Methods in Ecology and Evolution, 14(4), 994-1016. https://doi.org/10.1111/2041-210x.14061 Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O'Hara, R. B., Parris, K. M., Vesk, P. A., & McCarthy, M. A. (2014). Understanding co-occurrence bymodelling species simultaneously with a Joint Species DistributionModel (JSDM) [Article]. Methods in Ecology and Evolution, 5(5), 397-406. https://doi.org/10.1111/2041-210x.12180 Radosavljevic, A., & Anderson, R. P. (2014). Making better MAXENT models of species distributions: complexity, overfitting and evaluation [Article]. Journal of Biogeography, 41(4), 629-643. https://doi.org/10.1111/jbi.12227 Reside, A. E., Vanderwal, J., & Kutt, A. S. (2012). Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios. Ecol Evol, 2(4), 705-718. https://doi.org/10.1002/ece3.197 Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schroder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure [Article]. Ecography, 40(8), 913-929. https://doi.org/10.1111/ecog.02881 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 Cham. Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One, 8(8), e71218. https://doi.org/10.1371/journal.pone.0071218 Severinghaus, L. L., Ding, T.-S., Fang, W.-H., Lin, W.-H., Tsai, M.-C., & Yen, C.-W. (2012a). The avifauna of Taiwan (2nd ed., Vol. 1). Forest Bureau, Council of Agriculture. Severinghaus, L. L., Ding, T.-S., Fang, W.-H., Lin, W.-H., Tsai, M.-C., & Yen, C.-W. (2012b). The avifauna of Taiwan (2nd ed., Vol. 3). Forest Bureau, Council of Agriculture. Severinghaus, L. L., Ding, T.-S., Fang, W.-H., Lin, W.-H., Tsai, M.-C., & Yen, C.-W. (2012c). The avifauna of Taiwan (2nd ed., Vol. 2). Forest Bureau, Council of Agriculture. Shiu, H.-J. (2016). A GIS-based environmental database of Taiwan and Penghu islands. http://mountain-ecology.blogspot.tw/2016/06/gis.html Sillero, N., & Barbosa, A. M. (2021). Common mistakes in ecological niche models [Review]. International Journal of Geographical Information Science, 35(2), 213-226. https://doi.org/10.1080/13658816.2020.1798968 Snäll, T., Kindvall, O., Nilsson, J., & Pärt, T. (2011). Evaluating citizen-based presence data for bird monitoring. Biological Conservation, 144(2), 804-810. https://doi.org/https://doi.org/10.1016/j.biocon.2010.11.010 Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106(supplement_2), 19644-19650. https://doi.org/doi:10.1073/pnas.0901637106 Stralberg, D., Matsuoka, S. M., Hamann, A., Bayne, E. M., Solymos, P., Schmiegelow, F. K. A., Wang, X., Cumming, S. G., & Song, S. J. (2015). Projecting boreal bird responses to climate change: the signal exceeds the noise [Article]. Ecological Applications, 25(1), 52-69. https://doi.org/10.1890/13-2289.1 Thornton, D. H., Branch, L. C., & Sunquist, M. E. (2011). The influence of landscape, patch, and within-patch factors on species presence and abundance: a review of focal patch studies. Landscape Ecology, 26(1), 7-18. https://doi.org/10.1007/s10980-010-9549-z Townsend Peterson, A., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 30(4), 550-560. https://doi.org/10.1111/j.0906-7590.2007.05102.x Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007). A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions, 13(4), 397-405. https://doi.org/https://doi.org/10.1111/j.1472-4642.2007.00346.x Valavi, R., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2019). blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models [Article]. Methods in Ecology and Evolution, 10(2), 225-232. https://doi.org/10.1111/2041-210x.13107 van Strien, A. J., van Swaay, C. A. M., & Termaat, T. (2013). Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. Journal of Applied Ecology, 50(6), 1450-1458. https://doi.org/https://doi.org/10.1111/1365-2664.12158 VanDerWal, J., Shoo, L. P., Graham, C., & Williams, S. E. (2009). Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecological Modelling, 220(4), 589-594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. arXiv:1706.03762. Retrieved June 01, 2017, from https://ui.adsabs.harvard.edu/abs/2017arXiv170603762V Velásquez-Tibatá, J., Salaman, P., & Graham, C. H. (2013). Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Regional Environmental Change, 13(2), 235-248. https://doi.org/10.1007/s10113-012-0329-y Verbyla, D. L. (1987). Classification trees: a new discrimination tool. Canadian Journal of Forest Research, 17(9), 1150-1152. https://doi.org/10.1139/x87-177 Ward, D. F. (2007). Modelling the potential geographic distribution of invasive ant species in New Zealand [Article]. Biological Invasions, 9(6), 723-735. https://doi.org/10.1007/s10530-006-9072-y Warren, D. L., Matzke, N. J., & Iglesias, T. L. (2020). Evaluating presence-only species distribution models with discrimination accuracy is uninformative for many applications. Journal of Biogeography, 47(1), 167-180. https://doi.org/https://doi.org/10.1111/jbi.13705 Warton, D. I., Blanchet, F. G., O'Hara, R. B., Ovaskainen, O., Taskinen, S., Walker, S. C., & Hui, F. K. C. (2015). So Many Variables: Joint Modeling in Community Ecology [Review]. Trends in Ecology & Evolution, 30(12), 766-779. https://doi.org/10.1016/j.tree.2015.09.007 Wiens, J. J. (2011). The niche, biogeography and species interactions [Review]. Philosophical Transactions of the Royal Society B-Biological Sciences, 366(1576), 2336-2350. https://doi.org/10.1098/rstb.2011.0059 Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R., & McCarthy, M. A. (2019). A comparison of joint species distribution models for presence–absence data. Methods in Ecology and Evolution, 10(2), 198-211. https://doi.org/https://doi.org/10.1111/2041-210X.13106 Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & Distribut, N. P. S. (2008). Effects of sample size on the performance of species distribution models [Article]. Diversity and Distributions, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., Dormann, C. F., Forchhammer, M. C., Grytnes, J. A., Guisan, A., Heikkinen, R. K., Hoye, T. T., Kuhn, I., Luoto, M., Maiorano, L., Nilsson, M. C., Normand, S., Ockinger, E., Schmidt, N. M., . . . Svenning, J. C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling [Article]. Biological Reviews, 88(1), 15-30. https://doi.org/10.1111/j.1469-185X.2012.00235.x Yee, T. W., & Mitchell, N. D. (1991). Generalized additive models in plant ecology [Article]. Journal of Vegetation Science, 2(5), 587-602. https://doi.org/10.2307/3236170 Zurell, D., Berger, U., Cabral, J. S., Jeltsch, F., Meynard, C. N., Münkemüller, T., Nehrbass, N., Pagel, J., Reineking, B., Schröder, B., & Grimm, V. (2010). The virtual ecologist approach: simulating data and observers. Oikos, 119(4), 622-635. https://doi.org/https://doi.org/10.1111/j.1600-0706.2009.18284.x Zurell, D., Franklin, J., Konig, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J. J., Leitao, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schroder, B., Serra-Diaz, J. M., Thuiller, W., . . . Merow, C. (2020). A standard protocol for reporting species distribution models [Review]. Ecography, 43(9), 1261-1277. https://doi.org/10.1111/ecog.04960 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90498 | - |
dc.description.abstract | 物種分布模型為一根據生態棲位理論的模型,該模型計算生物出現點位與環境因子相關性,以預測未知時空下棲地適合生物生存程度的模型。過去生態學家基於不同的演算法發展出多種物種分布模型,並基於背景理論及對物種出現資料的限制,物種分布模型持續在設計、評估、解讀上受到廣泛討論。隨著電腦科學的發展,包含物種分布模型等任務皆可以透過深度學習來解決,本研究利用多個深度學習模組建立全新物種分布模型DeepSDM,回應並解決過去所遇到的問題,並藉由真實世界資料與虛擬物種資料比較模型表現之優劣。
本研究以所有物種之兩兩共域次數,套用詞嵌入概念計算物種出現的關聯性作為生物因子;透過注意力模組將其與環境因子結合;以各網格資料可信度加權擬空缺資料所占損失函數的權重;選用U-Net作為模型主要架構建立多物種、多時段、高時間解析度之物種分布模型。對於真實世界鳥類資料,DeepSDM的預測結果圖呈現高度穩定性;MaxEnt的兩個訓練方式MaxEntAll及MaxEntMonths則各顯露傳統物種分布模型單一時段訓練的缺點。DeepSDM與MaxEnt模型對虛擬物種資料預測結果之AUC值在VirtualReal及VirtualIdeal情境下的相異,說明了缺乏正確空缺資料將降低模型表現指標的意義,而在已知正確且完整的出現、缺席資料條件下,較不受物種廣泛度影響的f1值顯示DeepSDM的預測結果較MaxEnt優異。 DeepSDM利用多時段的物種出現-環境因子關聯、所有物種做為模型生物因子、多空間尺度的環境因子,建立涵蓋更多特徵維度的生態棲位超體積,並且以不同過往研究的角度加權擬空缺網格的權重,期以模擬複雜的實際狀況。結果證實DeepSDM比MaxEnt更具備回答物種分布問題的能力,未來該模型將可應用於多種大尺度物種分布任務中,成為最有力的工具之一。 | zh_TW |
dc.description.abstract | Species distribution models are models based on niche theory that calculates the correlation between the species occurrence and environmental factors to predict the suitability of habitats in unknown time and place. In the past, ecologists have developed various species distribution models based on different algorithms, and these models have been widely discussed in terms of design, evaluation, and interpretation, taking into account background theory and limitations of species occurrence data. With the development of computer science, tasks including species distribution modeling can be solved by deep learning. In this study, we have developed a novel species distribution model called DeepSDM using multiple deep learning modules to address and solve past issues about species distribution models. We have compared the performance of the model using real world data and virtual species data.
We used the pairwise co-occurrence frequency of all species and applied the concept of word embeddings to calculate the correlation of species occurrences as the biological factor. We combined it with environmental factors using attention modules and weighted the missing data in each grid based on the credibility of the grid data in the loss function. We used U-Net as the main architecture of the model to establish a multi-species, multi-temporal, and high temporal resolution species distribution model. For real world bird data, DeepSDM predicted results showed high stability, while the two different training methods of MaxEnt, MaxEntAll, and MaxEntMonths each exhibited the limitations of traditional species distribution models trained in a single time period. The AUC of DeepSDM and MaxEnt models for predicting virtual species data differed in the VirtualReal and VirtualIdeal scenarios, indicating that the lack of accurate absence data reduces the significance of model performance indicators. However, under the condition of known and complete presence and absence data, the f1 values, which are less influenced by species prevalence, demonstrated the superior predictive results of DeepSDM over MaxEnt. DeepSDM utilizes the correlations between species occurrences and environmental factors across multiple time periods, uses all species as biological factors, and incorporates environmental factors at multiple spatial scales to establish an ecological niche hypervolume that covers more feature dimensions. Additionally, the weights of the missing grid data are assigned based on different perspectives from previous studies to simulate complex real world situations. The results confirm that DeepSDM has a better ability to answer species distribution questions compared to MaxEnt. In the future, this model can be applied to various large-scale species distribution tasks , making it one of the most powerful tools in the field. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:21:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:21:27Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 目錄 iv 圖目錄 vi 表目錄 vii 前言 1 材料與方法 4 地理範圍 4 鳥種資料 4 環境因子 4 DeepSDM架構 5 物種共域向量 5 注意力模組 6 資料切分、資料增強 6 U-Net模型架構 7 將記錄的頻率視為努力量以校正負樣本 8 模型表現評估指標 8 真實世界鳥類資料 9 物種資料 9 環境因子 9 資料集 10 模型訓練過程 10 模型表現評估 10 虛擬物種資料 10 物種資料 10 環境因子 11 資料集 11 模型訓練過程 11 模型表現評估 12 結果 13 真實世界鳥類資料 13 虛擬物種資料 13 VirtualReal 13 VirtualIdeal 13 討論 15 模型預測結果比較 15 真實世界鳥類資料 15 虛擬物種資料 16 DeepSDM特色 17 利用所有生物間的關係來預測其他生物的分佈。 17 消弭實現多物種預測的資料限制 18 學習並量化生物在不同空間尺度下的生態區位 19 不完全將擬空缺資料視為空缺資料 20 結論 22 參考資料 23 圖 34 表 41 附錄圖目錄 46 附錄一、真實世界鳥類資料預測結果圖 49 附錄二、虛擬物種資料預測結果圖 100 | - |
dc.language.iso | zh_TW | - |
dc.title | 以深度學習架構建立物種分布模型 | zh_TW |
dc.title | Modelling Species Distribution with Deep Learning | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 沈聖峰 | zh_TW |
dc.contributor.coadvisor | Sheng-Feng Shen | en |
dc.contributor.oralexamcommittee | 陳一菁;林政道 | zh_TW |
dc.contributor.oralexamcommittee | I-Ching Chen;Cheng-Tao Lin | en |
dc.subject.keyword | 物種分布模型,深度學習,卷積神經網路,U-Net, | zh_TW |
dc.subject.keyword | species distribution model,deep learning,convolution neural network,U-Net, | en |
dc.relation.page | 148 | - |
dc.identifier.doi | 10.6342/NTU202302863 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
Appears in Collections: | 生態學與演化生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf Until 2028-08-03 | 39.2 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.