請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90496完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王宗興 | zh_TW |
| dc.contributor.advisor | Tsung-Shing Andrew Wang | en |
| dc.contributor.author | 張曉瑜 | zh_TW |
| dc.contributor.author | Hsiao-Yu Chang | en |
| dc.date.accessioned | 2023-10-03T16:20:55Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | (1)Bird, R. E.; Lemmel, S. A.; Yu, X.; Zhou, Q. A. Bioorthogonal Chemistry and Its Applications. Bioconjugate Chemistry 2021, 32 (12), 2457–2479.
(2)Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger Reaction. Science 2000, 287 (5460), 2007–2010. (3)Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(i)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition 2002, 41 (14), 2596–2599. (4)Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Copper-Free Click Chemistry for Dynamic in Vivo Imaging. Proceedings of the National Academy of Sciences 2007, 104 (43), 16793–16797. (5)Blackman, M. L.; Royzen, M.; Fox, J. M. Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels−alder Reactivity. Journal of the American Chemical Society 2008, 130 (41), 13518–13519. (6)Bumpus, T. W.; Baskin, J. M. Clickable Substrate Mimics Enable Imaging of Phospholipase D Activity. ACS Central Science 2017, 3 (10), 1070–1077. (7)Laughlin, S. T.; Bertozzi, C. R. Metabolic Labeling of Glycans with Azido Sugars and Subsequent Glycan-Profiling and Visualization via Staudinger Ligation. Nature Protocols 2007, 2 (11), 2930–2944. (8)Agarwal, P.; Beahm, B. J.; Shieh, P.; Bertozzi, C. R. Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry. Angewandte Chemie 2015, 127 (39), 11666–11672. (9)Ji, X.; Pan, Z.; Yu, B.; De La Cruz, L. K.; Zheng, Y.; Ke, B.;Wang, B. Click and release: bioorthogonal approaches to “ondemand” activation of prodrugs. Chem. Soc. Rev. 2019, 48 (4), 1077−1094. (10)Wang, Y.; Zhang, C.; Wu, H.; Feng, P. Activation and Delivery of Tetrazine-Responsive Bioorthogonal Prodrugs. Molecules 2020, 25 (23), 5640. (11)Takeda, T. Modern Carbonyl Olefination; Wiley-VCH, 2004. (12)Beemelmanns, C.; Roman, D.; Sauer, M. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. Synthesis 2021, 53 (16), 2713–2739. (13)Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. “On Water”: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angewandte Chemie 2005, 117 (21), 3339–3343. (14)Wu, J.; Zhang, D.; Wei, S. Wittig Reactions of Stabilized Phosphorus Ylides with Aldehydes in Water. Synthetic Communications 2005, 35 (9), 1213–1222. (15)Orsini, F.; Sello, G.; Fumagalli, T. One-Pot Wittig Reactions in Water and in the Presence of a Surfactant. ChemInform 2006, 37 (47). (16)El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A. L.; Bergdahl, M. Wittig Reactions in Water Media Employing Stabilized Ylides with Aldehydes. Synthesis of α,β-Unsaturated Esters from Mixing Aldehydes, α-Bromoesters, and Ph3P in Aqueous Nahco3. ChemInform 2007, 38 (49). (17)Shi, Y.; Fu, L.; Yang, J.; Carroll, K. S. Wittig Reagents for Chemoselective Sulfenic Acid Ligation Enables Global Site Stoichiometry Analysis and Redox-Controlled Mitochondrial Targeting. Nature Chemistry 2021, 13 (11), 1140–1150. (18)Triana, V.; Derda, R. Tandem Wittig/Diels–Alder Diversification of Genetically Encoded Peptide Libraries. Organic & Biomolecular Chemistry 2017, 15 (37), 7869–7877. (19)Hartmann, R. W.; Pijnappel, M.; Nilvebrant, J.; Helgudottir, H. R.; Asbjarnarson, A.; Traustadottir, G. A.; Gudjonsson, T.; Nygren, P.-Å.; Lehmann, F.; Odell, L. R. The Wittig Bioconjugation of Maleimide Derived, Water Soluble Phosphonium Ylides to Aldehyde-Tagged Proteins. Organic & Biomolecular Chemistry 2021, 19 (47), 10417–10423. (20)Jin, X.; Huang, Z.; Xie, L.; Liu, L.; Han, D.; Cheng, L. Photo‐facilitated Detection and Sequencing of 5‐formylcytidine RNA. Angewandte Chemie 2022, 134 (49). (21)Dalton, S. E.; Campos, S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. ChemBioChem 2020, 21 (8), 1080–1100. (22)Shindo, N.; Ojida, A. Recent Progress in Covalent Warheads for in Vivo Targeting of Endogenous Proteins. Bioorganic & Medicinal Chemistry 2021, 47, 116386. (23)Lu, X.; Smaill, J. B.; Patterson, A. V.; Ding, K. Discovery of Cysteine-Targeting Covalent Protein Kinase Inhibitors. Journal of Medicinal Chemistry 2021, 65 (1), 58–83. (24)Arthur, R.; Beatriz Valle-Argos, B.; Steele, A. J.; Packham, G. Development of Protacs to Address Clinical Limitations Associated with BTK-Targeted Kinase Inhibitors. Exploration of Targeted Anti-tumor Therapy 2020, 1 (3), 131–152. (25)Békés, M.; Langley, D. R.; Crews, C. M. PROTAC Targeted Protein Degraders: The Past Is Prologue. Nature Reviews Drug Discovery 2022, 21 (3), 181–200. (26)Kelm, J. M.; Pandey, D. S.; Malin, E.; Kansou, H.; Arora, S.; Kumar, R.; Gavande, N. S. PROTAC’ing Oncoproteins: Targeted Protein Degradation for Cancer Therapy. Molecular Cancer 2023, 22 (1). (27)Buhimschi, A. D.; Armstrong, H. A.; Toure, M.; Jaime-Figueroa, S.; Chen, T. L.; Lehman, A. M.; Woyach, J. A.; Johnson, A. J.; Byrd, J. C.; Crews, C. M. Targeting the C481s Ibrutinib-Resistance Mutation in Bruton’s Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry 2018, 57 (26), 3564–3575. (28)Zorba, A.; Nguyen, C.; Xu, Y.; Starr, J.; Borzilleri, K.; Smith, J.; Zhu, H.; Farley, K. A.; Ding, W.; Schiemer, J.; Feng, X.; Chang, J. S.; Uccello, D. P.; Young, J. A.; Garcia-Irrizary, C. N.; Czabaniuk, L.; Schuff, B.; Oliver, R.; Montgomery, J.; Hayward, M. M.; Coe, J.; Chen, J.; Niosi, M.; Luthra, S.; Shah, J. C.; El-Kattan, A.; Qiu, X.; West, G. M.; Noe, M. C.; Shanmugasundaram, V.; Gilbert, A. M.; Brown, M. F.; Calabrese, M. F. Delineating the Role of Cooperativity in the Design of Potent Protacs for BTK. Proceedings of the National Academy of Sciences 2018, 115 (31). (29)Paiva, S.-L.; Crews, C. M. Targeted Protein Degradation: Elements of PROTAC Design. Current Opinion in Chemical Biology 2019, 50, 111–119. (30)Lee, J.; Lee, Y.; Jung, Y. M.; Park, J. H.; Yoo, H. S.; Park, J. Discovery of E3 Ligase Ligands for Target Protein Degradation. Molecules 2022, 27 (19), 6515. (31)Lebraud, H.; Wright, D. J.; Johnson, C. N.; Heightman, T. D. Protein Degradation by In-Cell Self-Assembly of Proteolysis Targeting Chimeras. ACS Central Science 2016, 2 (12), 927–934. (32)Liu, N.; Hoogendoorn, S.; van de Kar, B.; Kaptein, A.; Barf, T.; Driessen, C.; Filippov, D. V.; van der Marel, G. A.; van der Stelt, M.; Overkleeft, H. S. Direct and Two-Step Bioorthogonal Probes for Bruton’s Tyrosine Kinase Based on Ibrutinib: A Comparative Study. Biomolecular Chemistry 2015, 13 (18), 5147–5157. (33)Turetsky, A.; Kim, E.; Kohler, R. H.; Miller, M. A.; Weissleder, R. Single Cell Imaging of Bruton’s Tyrosine Kinase Using an Irreversible Inhibitor. Scientific Reports 2014, 4 (1). (34)Wang, X.; Ma, N.; Wu, R.; Ding, K.; Li, Z. A Novel Reactive Turn-on Probe Capable of Selective Profiling and No-Wash Imaging of Bruton’s Tyrosine Kinase in Live Cells. Chemical Communications 2019, 55 (24), 3473–3476. (35)Byrne, P. A.; Gilheany, D. G. Frontispiece: The Mechanism of Phosphonium Ylide Alcoholysis and Hydrolysis: Concerted Addition of the O−H Bond across the P=C Bond. Chemistry - A European Journal 2016, 22 (27). (36)Kuykendall, D. W.; Anderson, C. A.; Zimmerman, S. C. Hydrogen-Bonded Deug·dan Heterocomplex: Structure and Stability and a Scalable Synthesis of DEUG with Reactive Functionality. Organic Letters 2008, 11 (1), 61–64. (37)Eisenberg, D. S.; Harran, P. G.; El Khoury, A.; Seidler, P. M. Catalytic Synthesis of Pegylated EGCG Conjugates That Disaggregate Alzheimer’s TAU. Synthesis 2021, 53 (22), 4263–4271. (38)Kitov, P. I.; Vinals, D. F.; Ng, S.; Tjhung, K. F.; Derda, R. Rapid, Hydrolytically Stable Modification of Aldehyde-Terminated Proteins and Phage Libraries. Journal of the American Chemical Society 2014, 136 (23), 8149–8152. (39)Krieg, B. J.; Taghavi, S. M.; Amidon, G. L.; Amidon, G. E. In Viv O Predictive Dissolution: Transport Analysis of the CO 2 , Bicarbonate in Vivo Buffer System. Journal of Pharmaceutical Sciences 2014, 103 (11), 3473–3490. (40)Lanning, B. R.; Whitby, L. R.; Dix, M. M.; Douhan, J.; Gilbert, A. M.; Hett, E. C.; Johnson, T. O.; Joslyn, C.; Kath, J. C.; Niessen, S.; Roberts, L. R.; Schnute, M. E.; Wang, C.; Hulce, J. J.; Wei, B.; Whiteley, L. O.; Hayward, M. M.; Cravatt, B. F. A Road Map to Evaluate the Proteome-Wide Selectivity of Covalent Kinase Inhibitors. Nature Chemical Biology 2014, 10 (9), 760–767. (41)Li, X.; Zuo, Y.; Tang, G.; Wang, Y.; Zhou, Y.; Wang, X.; Guo, T.; Xia, M.; Ding, N.; Pan, Z. Discovery of a Series of 2,5-Diaminopyrimidine Covalent Irreversible Inhibitors of Bruton’s Tyrosine Kinase with in Vivo Antitumor Activity. Journal of Medicinal Chemistry 2014, 57 (12), 5112–5128. (42)Honigberg, L. A.; Smith, A. M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D. H.; Miller, R. A.; Buggy, J. J. The Bruton Tyrosine Kinase Inhibitor PCI-32765 Blocks B-Cell Activation and Is Efficacious in Models of Autoimmune Disease and B-Cell Malignancy. Proceedings of the National Academy of Sciences 2010, 107 (29), 13075–13080. (43)He, K.; Zhang, Z.; Wang, W.; Zheng, X.; Wang, X.; Zhang, X. Discovery and Biological Evaluation of Proteolysis Targeting Chimeras (Protacs) as an EGFR Degraders Based on Osimertinib and Lenalidomide. Bioorganic & Medicinal Chemistry Letters 2020, 30 (12), 127167. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90496 | - |
| dc.description.abstract | 標靶型共價抑制劑(Targeted covalent inhibitors,TCIs)及蛋白降解靶向嵌合體(proteolysis targeting chimera,PROTAC)為近年來備受關注的癌症治療策略之一。TCI的優勢在於和標靶蛋白的不可逆共價抑制,可以增強藥效。但其中最大問題為脫靶效應(off-target effect),一旦形成錯誤不可逆鍵結便會導致嚴重的細胞毒性。另一方面,PROTAC則可以加速標靶蛋白降解,可應用於降解難成藥靶的蛋白及具抗藥性的突變蛋白。然而,較大的PROTAC分子會降低細胞穿膜度,導致生物應用受限。
在本研究中,我們利用二種水相相容的接續反應生成TCI藥物及PROTAC。首先,藉由含拉電子基磷鹽(stable phosphorus ylides)和醛衍生物,可在生理條件下進行威悌反應(Wittig reaction)形成丙烯醯胺(acrylamide),開啟共價抑制活性。若使用帶有疊氮基團的醛衍生物,則可更進一步和可點擊E3徵招分子進行SPAAC反應,組裝成PROTAC。利用布魯頓酪氨酸激酶(Bruton's tyrosine kinase, BTK) 抑制劑Ibrutinib、Spebrutinib的磷鹽做為測試模型,在試管中我們成功展示上述多樣性的組裝策略。同時在細胞實驗中,抑制劑磷鹽及醛衍生物可成功自組裝並共價標記上目標蛋白BTK。若一併加入可點擊E3徵招分子,可觀察到目標蛋白BTK的降解。利用此策略,多樣化的TCI及PROTAC分子可以在生理條件下簡易地組裝,並進一步進行生物活性測試。 | zh_TW |
| dc.description.abstract | Targeted covalent inhibitors (TCIs) and proteolysis targeting chimera (PROTACs) are currently attractive cancer therapeutic strategies. TCIs irreversibly bind to targeted proteins to enhance their bioactivity. However, nonspecific covalent bond formation might cause off-target cytotoxicity. On the other hand, PROTACs are able to accelerate targeted protein degradation. Moreover, PROTACs potentially target undruggable proteins and drug-resistant mutant proteins. Nevertheless, the larger PROTACs might have reduced cell permeability, hence limiting their biomedical applications.
In our work, we utilize two biocompatible reactions to assemble TCIs and PROTACs sequentially. First, under aqueous physiological conditions, stabilized phosphorus ylides and various functionalized aldehydes could undergo Wittig olefination to afford acrylamide inhibitors, which serve as the emerged electrophilic warheads for covalent inhibition. Furthermore, using azido-containing aldehydes, these acrylamide inhibitors could further ligate with clickable E3 ligase ligands through the strain-promoted alkyne-azide cycloaddition (SPAAC) to assemble PROTACs. Choosing Bruton's tyrosine kinase (BTK) inhibitors, Ibrutinib and Spebrutinib, as model compounds, we demonstrated our versatile assemble strategies of TCIs and PROTACs in vitro. In cellular conditions, the acrylamide-containing TCIs can be successfully assembled and in situ label BTK proteins. After ligating with clickable E3 ligase ligands, we can also observe degradation of BTK proteins. In short, through our versatile assemble strategy, various TCIs and PROTACs could be easily formed under mild conditions for subsequent bioactivity screening. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:20:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:20:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement ⅰ
Abstract (Chinese) ⅱ Abstract (English) ⅲ List of Figures ⅷ List of Schemes ⅺ Abbreviations ⅻ Chapter 1 Introduction 1 1-1 Aqueous Biocompatible Conjugation Reaction 1 1-1.1 Introduction of Aqueous Biocompatible Conjugation Reactions 1 1-1.2 The Applications of Biocompatible Conjugation Reactions 3 1-2 The Alkene Formation 4 1-2.1 The Wittig Type Reaction 4 1-2.2 The Optimization of Wittig Reaction under Aqueous Conditions 6 1-2.3 The Applications of Biocompatible Wittig Reaction 7 1-3 Targeted Covalent Inhibitors 9 1-3.1 Introduction of Targeted Covalent Inhibitors 9 1-3.2 α,β-unsaturated Carbonyl Warheads in Targeted Covalent Inhibitors 10 1-3.3 Introduction of Bruton’s Tyrosine Kinase 12 1-4 Proteolysis-Targeting Chimeras (PROTACs) 13 1-4.1 The Mechanism of Protein Degradation Through PROTACs 13 1-4.2 The Developments of PROTACs 14 Chapter 2 Results and Discussion 17 2-1 Molecular Design 17 2-2 Preparation of Phosphonium Drug Precursors 19 2-3 Screening the Carbonyl Substrates for Aqueous Wittig Reaction 20 2-4 Preparation of Azide-Containing Aldehydes 24 2-5 The Aqueous Wittig Reaction of Azide-Containing Aldehydes with Phosphonium Precursors 27 2-6 BTK Labeling Through Drug Precursors and Azide-Containing Aldehydes 31 2-7 Cytotoxicity of TCIs and TCI Derivatives 36 2-8 BTK Degradation Through Purified PROTACs and Two-Component PROTACs 40 2-9 Preparation of Glyoxamide-Containing Thalidomide 44 2-10 The Aqueous Wittig Reaction of AldeTH with Phosphonium Precursors 45 2-11 The Evaluation of BTK Degradation in Response to Ibr-OH-TH Treated in Ramos Cells 47 Chapter 3 Conclusions and Perspectives 49 Chapter 4 Material and Methods 50 4-1 General Methods 50 4-2 Synthesis and Characterization of Compounds 51 4-2.1 Synthesis of Drug Precursors – IbrPPh3 and SpePPh3 51 4-2.2 Synthesis of Azide-Containing Aldehydes 60 4-2.3 Synthesis of The TCI Derivative 67 4-2.4 Click Reaction of Ibr-9C-DBCOTH 68 4-2.5 Synthesis of Glyoxamide-Containing Thalidomide 69 4-2.6 Assembly of Ibr-OH-TH 75 4-3 In Vitro Experiments 76 4-3.1 The Wittig Product Formation Monitored by HPLC 76 4-3.2 General HPLC Conditions for Analytical Assays 77 4-4 Biological Experiments 77 4-4.1 Cell Culture 77 4-4.2 Treatment for BTK Labeling Experiments 78 4-4.3 Treatment for Cytotoxicity Experiments 79 4-4.4 Treatment for BTK Degradation Experiments 79 4-4.5 General Methods for Cell Lysis 80 4-4.6 General Methods for In-Gel Fluorescence 80 4-4.7 General Methods for AlamarBlue Cell Viability Assay 81 4-4.8 General Methods for Western Blotting 82 References 83 APPENDIX NMR Spectra and HPLC Characterization 90 | - |
| dc.language.iso | en | - |
| dc.subject | 威悌反應 | zh_TW |
| dc.subject | 水相相容反應 | zh_TW |
| dc.subject | 共價抑制劑 | zh_TW |
| dc.subject | 蛋白降解靶向嵌合體 | zh_TW |
| dc.subject | targeted covalent inhibitors | en |
| dc.subject | aqueous compatible reaction | en |
| dc.subject | Wittig reaction | en |
| dc.subject | PROTAC | en |
| dc.title | 利用水相威悌和點擊化學反應多樣化組裝共價抑制劑及蛋白降解靶向嵌合體 | zh_TW |
| dc.title | Versatile Assembly of Covalent Inhibitors and PROTACs via Aqueous Wittig and Click Reactions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝俊結;朱忠瀚 | zh_TW |
| dc.contributor.oralexamcommittee | Jiun-Jie Shie;Chung-Han Chu | en |
| dc.subject.keyword | 威悌反應,水相相容反應,共價抑制劑,蛋白降解靶向嵌合體, | zh_TW |
| dc.subject.keyword | Wittig reaction,aqueous compatible reaction,targeted covalent inhibitors,PROTAC, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU202303020 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2028-08-10 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-08-10 | 9.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
