Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭茂坤zh_TW
dc.contributor.advisorMao-Kuen Kuoen
dc.contributor.author劉兆罡zh_TW
dc.contributor.authorChao-Kang Liuen
dc.date.accessioned2023-10-03T16:20:38Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1 A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288-290, 1986.
2 A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40(12), 73, 1978.
3 A. Ashkin, “Applications of Laser Radiation Pressure,” SCIENCE. 210(4474), 1081-1088, 1980.
4 A. Ashkin and J. P. Gordon, “Stability of radiation-pressure particle traps: an optical Earnshaw theorem,” Opt. Lett. 8(10), 511-513, 1983.
5 A. Ashkin, J. M. Dziedzic, “Observation of Radiation-Pressure Trapping of Particles by Alternating Light Beams,” Phys. Rev. Lett. 54(12), 1245, 1985.
6 A. Ashkin, J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett. 19(283), 283-285, 1971.
7 A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nature Photon. 2(6), 365-370, 2008.
8 J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance. Journal of the American Chemical Society,” 131(2), 436-437, 2009.
9 A. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto, M. Refregiers, and J. Kardos, “Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy,” Proc. Natl. Acad. Sci. USA 112(24), E3095-3103, 2015.
10 M. Sarikaya, C. Tamerler, A. K.-Y. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: nanotechnology through biology,” Nat. Mater. 2(9), 577-585, 2003.
11 X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115-2120, 2006.
12 S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451(7178), 553-556, 2008.
13 S.-J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503-1506, 2002.
14 E. T. Thostenson, Z. Ren, T.-W. Chou, and Technology, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol. 61(13), 1899-1912, 2001.
15 S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56-58, 1991.
16 L. B. Ma, “Spin–orbit coupling of light in asymmetric microcavities,” Nature communications, 7(1), 10983, 2016.
17 F. Bouchard, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Applied Physics Letters, 105(10), 101905, 2014.
18 D. Pal, S. D. Gupta, N. Ghosh, and A. Banerjee, “Direct observation of the effects of spin dependent momentum of light in optical tweezers,” APL Photonics, 5(8), 086106, 2020.
19 M. Tamura, T. Omatsu, S. Tokonami, and T. Iida, “Interparticle-interaction-mediated anomalous acceleration of nanoparticles under light-field with coupled orbital and spin angular momentum,” Nano Letters, 19(8), 4873-4878, 2019.
20 R. Li, R. Yang, C. Ding, and F. G. Mitri, “Optical torque on a magneto-dielectric Rayleigh absorptive sphere by a vector Bessel (vortex) beam. Journal of Quantitative Spectroscopy and Radiative Transfer,” 191, 96-115, 2017.
21 Z. Yan, and N. F. Scherer, “Optical vortex induced rotation of silver nanowires. The Journal of Physical Chemistry Letters,” 4(17), 2937-2942, 2013.
22 D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory. Journal of Mathematical Physics,” 5(5), 696-700, 1964.
23 A. A. Wu, Y. Y. Tanaka, R. Fukuhara, and T. Shimura, “Continuity equation for spin angular momentum in relation to optical chirality,” Physical Review A, 102(2), 023531, 2020.
24 林俊瑋,金奈米聚體的光力捕捉之研究及Zilch張量與能量-動量張量之比較,國立臺灣大學應用力學研究所碩士論文2021。
25 陳炳憲,金奈米孔洞陣列量測環境折射率變化之探討,國立臺灣大學應用力學研究所碩士論文2022。
26 J.-W. Liaw, B.-X. Chen, Y.-C. Ku, C.-Y. Yang, C.-W. Lin, M.-K. Kuo, Optical manipulation of optical vortex beam on gold nanoparticle. J. Mech. 38, 552–559, 2022.
27 K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” Journal of Optics B: Quantum and Semiclassical Optics, 4(2), S82, 2002.
28 羅佳芸,受圓偏振光照射之金奈米結構所產生的軌道角動量,國立臺灣大學應用力學研究所碩士論文2020。
29 楊竣壹,Bessel光束對多顆奈米粒子的光力操控,國立臺灣大學應用力學研究所碩士論文2022。
30 T. Qi, F. Han, W. Liu, & Z. Yan , “Stable Negative Optical Torque in Optically Bound Nanoparticle Dimers,” Nano Letters, 22(21), 8482-8486, 2022.
31 趙學昱,金奈米粒子在平面波照射下的遠距離穩定與近距離結合,國立台灣大學應用力學研究所碩士論文2016。
32 R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Dublin Philosophical Magazine, 4(21), 396-402, 1902.
33 R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Physical review, 106(5), 874, 1957.
34 W. L. Barnes, A. Dereux, and T. M. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830, 2003.
35 G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” American Journal of Physics, 81, 224–230, 2013.
36 M. Nieto-Vesperinas, “Optical torque: electromagnetic spin and orbital-angular-momentum conservation laws and their significance,” Physical Review A, 92(4), 043843, 2015.
37 M. Nieto-Vesperinas, “Optical torque on small bi-isotropic particles,” Optics letters, 40(13), 3021-3024, 2015.
38 C. W. Peterson, J. Parker, S. A. Rice, and N. F. Scherer, “Controlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradients,” Nano Letters, 19(2), 897-903, 2019.
39 Lehmuskero A, Li Y, Johansson P, Käll M. Plasmonic particles set into fast orbital motion by an optical vortex beam. Opt. Express 22(4):4349–4356, 2014.
40 K. Y. Bliokh, A. Y. Bekshaev, & F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nature communications, 5(1), 1-8, 2014.
41 D. J. Evans, “A new 4th order Runge-Kutta method for initial value problems with error control,” International Journal of Computer Mathematics, 39(3-4), 217-227, 1991.
42 陳皇志,單顆和雙顆多層奈米粒子之表面電漿子模態分析,國立臺灣大學應用力學研究所碩士論文2013。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90495-
dc.description.abstract本研究旨在探討在平面波圓形極化光照射金奈米二聚體時,金奈米粒子之間交互作用產生逆公轉的現象,並進一步分析帶有軌道的Bessel光束照射金奈米粒子時,自旋與軌道之交互作用(spin-orbit interaction, SOI)對粒子運動軌跡、能量、動量、角動量等物理量的影響,特別是角動量之轉換分析。本研究採用多重中心展開法(multiple-multipole expansions method)計算電磁場,再以Maxwell應力張量計算奈米粒子所受到的光力與光力矩。最後,研究利用粒子運動方程式計算多顆金奈米粒子的運動軌跡以及公轉與自旋轉速。
根據數值結果顯示,平面波圓形極化光照射下,粒子的自旋角動量與多極子疊加會導致金奈米粒子之間產生逆公轉的現象。接著進一步研究帶有軌道的Bessel光束時,半徑150 nm金奈米二聚體也觀察到逆公轉的現象。
當使用Ɩ = 0階的Bessel光束在平衡位置進行照射時,不會提供軌道角動量特性。然而,在照射單顆金奈米粒子時,隨著體積的增加,由於高階模態與多極子疊加的極化方向,部分的自旋角動量被轉換到軌道角動量。因此,自旋與軌道運動行為的方向相同。此外,利用介電珠的不吸收的特性進行分析,可以驗證當不提供自旋角動量時,此時軌道角動量值極小,幾乎不會發生公轉現象。當使用Ɩ = 1~5階的Bessel光束進行照射時,隨著階數的提高使軌道半徑增加,平衡位置下入射電場強度降低,自旋與軌道之角動量與轉速也會下降。
在Bessel光束照射半徑50 nm之多顆金奈米粒子中,由於粒子之間的交互作用較弱,左旋與右旋光之間的排列圖形皆為串珠式;運動軌跡在電場最強處,粒子間距維持著1倍的水中波長。在金奈米三聚體與四聚體中,利用粒子的大小、高階數使軌道半徑增加讓側向電場較均勻,最後形成三角形、菱形之粒子群。若金奈米粒子太大顆會產生對邊或明顯的內外圈之各種變化的運動軌跡。
zh_TW
dc.description.abstractThe aim of this study is to investigate the phenomenon of counter-rotation between gold nanoparticles under the illumination of plane waves with circular polarization, and to further analyze the effects of spin-orbit interaction (SOI) in the presence of Bessel beams with orbital characteristics on the particle's motion trajectories, energy, momentum, angular momentum, and particularly the analysis of angular momentum conversion. The multiple-multipole expansions method is employed to calculate the electromagnetic field, and then the Maxwell stress tensor is used to calculate the optical force and torque experienced by the nanoparticles. Finally, the study utilizes the particle motion equations to calculate the trajectories of multiple gold nanoparticles, as well as the revolution and spin rotation speeds.
According to the numerical results, it is observed that under the illumination of plane waves with circular polarization, the superposition of spin angular momentum and multipole moments in particles leads to the phenomenon of counter-rotation between gold nanoparticles. Furthermore, further research on Bessel beams with orbital characteristics has also observed the counter-rotation phenomenon in a 150 nm radius gold nanoparticle dimer.
When a zero-order Bessel beam is used for irradiation at the equilibrium position, it does not provide orbital angular momentum characteristics. However, when irradiating a single gold nanoparticle, with an increase in volume, due to the polarization direction resulting from the superposition of higher-order modes and multipole moments, a portion of the spin angular momentum is converted into orbital angular momentum. Therefore, the directions of spin and orbital motion behavior are the same. Additionally, by analyzing the non-absorbing properties of dielectric beads, it can be verified that when spin angular momentum is not provided, the orbital angular momentum value is extremely small, and revolution phenomena hardly occur. When irradiated with Bessel beams of order 1 to 5, an increase in order leads to an increase in the orbital radius, a decrease in the incident electric field intensity at the equilibrium position, and a reduction in both the spin and orbital angular momentum and rotation speed.
In the case of multiple gold nanoparticles with a radius of 50 nm under Bessel beam irradiation, the interaction between particles is weak. The motion trajectories between left-hand circularly polarized light and right-hand circularly polarized light are in the form of string-like patterns at the strongest region of the electric field, with interparticle distances maintained at 1 times the wavelength in water. In the case of gold nanoparticle trimers and tetramers, by manipulating the particle sizes and higher-order modes, the orbital radius is increased to achieve a more uniform lateral electric field, resulting in the formation of triangular or rhombus-shaped particle clusters. If the gold nanoparticles are too large, various variations in motion trajectories, such as edge-to-edge or distinct inner and outer rings, can be observed.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:20:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:20:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xxii
第1章 緒論 1
1.1 前言 1
1.2 動機與目的 2
1.3 文獻回顧 3
第2章 電磁相關理論 5
2.1 Maxwell應力張量 5
2.2 Lipkin’s zilch張量 7
2.3 Bessel光束 9
2.4 粒子運動方程式 12
第3章 數值結果分析與討論 14
3.1 平面波照射金奈米二聚體 14
3.1.1 線性極化光 15
3.1.2 圓形極化光 20
3.2 Bessel光束照射金奈米粒子之操控 26
3.2.1 單顆奈米粒子之角動量轉換分析 27
3.2.1.1 Ɩ = 0階與多極子分析 27
3.2.1.2 Ɩ = 1~5階 37
3.2.2 多顆金奈米粒子之角動量分析 60
3.2.2.1金奈米二聚體 61
3.2.2.2金奈米三聚體 74
3.2.2.3金奈米四聚體 84
第4章 結論與未來展望 91
4.1 結論 91
4.2 未來展望 92
參考文獻 92
-
dc.language.isozh_TW-
dc.subject平面波zh_TW
dc.subject多極子zh_TW
dc.subject自旋角動量zh_TW
dc.subject軌道角動量zh_TW
dc.subject光力矩zh_TW
dc.subjectBessel光束zh_TW
dc.subject光力zh_TW
dc.subject金奈米粒子zh_TW
dc.subject介電珠zh_TW
dc.subjectzilch張量zh_TW
dc.subjectdielectric beaden
dc.subjectoptical forceen
dc.subjectBessel beamen
dc.subjectoptical torqueen
dc.subjectorbital angular momentumen
dc.subjectspin angular momentumen
dc.subjectzilch tensoren
dc.subjectAu nanoparticlesen
dc.subjectmultipoleen
dc.subjectplane waveen
dc.titleBessel光束照射金奈米粒子之角動量轉換分析zh_TW
dc.titleAnalysis of Angular Momentum Conversion in Gold Nanoparticles Irradiated by Bessel Beamsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖駿偉;藍永強zh_TW
dc.contributor.oralexamcommitteeJiunn-Woei Liaw;Yung-Chiang Lanen
dc.subject.keyword光力,Bessel光束,光力矩,軌道角動量,自旋角動量,zilch張量,金奈米粒子,多極子,平面波,介電珠,zh_TW
dc.subject.keywordoptical force,Bessel beam,optical torque,orbital angular momentum,spin angular momentum,zilch tensor,Au nanoparticles,multipole,plane wave,dielectric bead,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202302943-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2028-08-04-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
8.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved