Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭浩明zh_TW
dc.contributor.advisorHao-Ming Hsiaoen
dc.contributor.author黃子瑜zh_TW
dc.contributor.authorTzu-Yu Huangen
dc.date.accessioned2023-10-03T16:19:32Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] J. Hallgrimsson, and H. Tulinius, “Chronic Non-Rheumatic Aortic Valvular Disease: A Population Study Based On Autopises,” Journal of Chronic Diseases, vol. 32, pp. 355-363, 1979.
[2] J. L. d'Arcy, B. D. Prendergast, J. B. Chambers et al., “Valvular heart disease: the next cardiac epidemic,” Heart, vol. 97, no. 2, pp. 91-3, Jan, 2011.
[3] S. Coffey, R. Roberts-Thomson, A. Brown et al., “Global epidemiology of valvular heart disease,” Nat Rev Cardiol, vol. 18, no. 12, pp. 853-864, Dec, 2021.
[4] R. S. Madhurapantula, G. Krell, B. Morfin et al., “Advanced Methodology and Preliminary Measurements of Molecular and Mechanical Properties of Heart Valves under Dynamic Strain,” Int J Mol Sci, vol. 21, no. 3, Jan 24, 2020.
[5] F. E. Vollebergh, and A. E. Becker, “Minor congenital variations of cusp size in tricuspid aortic valves. Possible link with isolated aortic stenosis,” Br Heart J, vol. 39, no. 9, pp. 1006-11, Sep, 1977.
[6] A. Randhawa, T. Gupta, P. Singh et al., “Description of the aortic root anatomy in relation to transcatheter aortic valve implantation,” Cardiovasc Pathol, vol. 40, pp. 19-23, May - Jun, 2019.
[7] T. E. David, “Surgical treatment of aortic valve disease,” Nat Rev Cardiol, vol. 10, no. 7, pp. 375-86, Jul, 2013.
[8] "Heart valve disease," 2022/6/5, 2022; https://www.heartfoundation.org.nz/your-heart/heart-conditions/heart-valve-disease.
[9] Z. Mrsic, S. P. Hopkins, J. L. Antevil et al., “Valvular Heart Disease,” Prim Care, vol. 45, no. 1, pp. 81-94, Mar, 2018.
[10] H. Akahori, T. Tsujino, T. Masuyama et al., “Mechanisms of aortic stenosis,” J Cardiol, vol. 71, no. 3, pp. 215-220, Mar, 2018.
[11] O. A. Akinseye, A. Pathak, and U. N. Ibebuogu, “Aortic Valve Regurgitation: A Comprehensive Review,” Curr Probl Cardiol, vol. 43, no. 8, pp. 315-334, Aug, 2018.
[12] S. Gati, A. Malhotra, and S. Sharma, “Exercise recommendations in patients with valvular heart disease,” Heart, vol. 105, no. 2, pp. 106-110, Jan, 2019.
[13] A. Kanwar, J. J. Thaden, and V. T. Nkomo, “Management of Patients With Aortic Valve Stenosis,” Mayo Clin Proc, vol. 93, no. 4, pp. 488-508, Apr, 2018.
[14] R. O. Bonow, and P. Greenland, “Population-wide trends in aortic stenosis incidence and outcomes,” Circulation, vol. 131, no. 11, pp. 969-71, Mar 17, 2015.
[15] C. M. Otto, I. G. Burwash, M. E. Legget et al., “Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome,” Circulation, vol. 95, no. 9, pp. 2262-70, May 6, 1997.
[16] K. H. Zheng, E. Tzolos, and M. R. Dweck, “Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy,” Cardiol Clin, vol. 38, no. 1, pp. 1-12, Feb, 2020.
[17] A. W. Harris, P. Pibarot, and C. M. Otto, “Aortic Stenosis: Guidelines and Evidence Gaps,” Cardiol Clin, vol. 38, no. 1, pp. 55-63, Feb, 2020.
[18] C. M. Otto, R. A. Nishimura, R. O. Bonow et al., “2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines,” Circulation, vol. 143, no. 5, pp. e72-e227, Feb 2, 2021.
[19] T. Kaneko, and L. H. Cohn, “Mitral valve repair,” Circ J, vol. 78, no. 3, pp. 560-6, 2014.
[20] M. Russoa, M. Taramassoa, A. Guidottia et al., “The evolution of surgical valves,” Cardiovascular Medicine, pp. 285–292, 2017.
[21] A. M. Matthews, “ The development of the Starr-Edwards heart valve,” Tex. Heart Inst. J., vol. 25, pp. 282-293, 1998.
[22] M. Amrane, G. Soulat, A. Carpentier et al., “Starr-Edwards aortic valve: 50+ years and still going strong: a case report,” Eur Heart J Case Rep, vol. 1, no. 2, pp. ytx014, Dec, 2017.
[23] N. M. o. A. History. "Starr-Edwards Heart Valve," 2022/6/5, 2022; https://americanhistory.si.edu/collections/search/object/nmah_1726277.
[24] P. Pibarot, and J. G. Dumesnil, “Prosthesis-patient mismatch: definition, clinical impact, and prevention,” Heart, vol. 92, no. 8, pp. 1022-9, Aug, 2006.
[25] Abbott. "Surgical Heart Valves Mechanical Heart Valves," 2022/6/5, 2022; https://www.structuralheart.abbott/products/mechanical-heart-valve/regent-valve-masters-series-mechanical-heart-valve#masters-features.
[26] Medtronic. "Medtronic Open Pivot Mechanical Heart Vavles for Aortic or Mitral Valve Replacement," 2022/6/5, 2022; https://www.medtronic.com/us-en/healthcare-professionals/products/cardiovascular/heart-valves-surgical/open-pivot-mechanical-heart-valve.html.
[27] R. A. Hopkins, J. S. Louis, and P. C. Corcoran, “Ross' first homograft replacement of the aortic valve,” The Annals of Thoracic Surgery, vol. 52, no. 5, pp. 1190-1193, 1991.
[28] J. H. Kwon, M. Hill, B. Gerry et al., “Surgical techniques for aortic valve xenotransplantation,” J Cardiothorac Surg, vol. 16, no. 1, pp. 358, Dec 28, 2021.
[29] N. Piazza, S. Bleiziffer, G. Brockmann et al., “Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve: from concept to clinical application and evaluation (part 1),” JACC Cardiovasc Interv, vol. 4, no. 7, pp. 721-32, Jul, 2011.
[30] T. David, “How to Decide Between a Bioprosthetic and Mechanical Valve,” Can J Cardiol, vol. 37, no. 7, pp. 1121-1123, Jul, 2021.
[31] J. G. Harold, “The Evolution of Transcatheter Aortic Valve Replacement ” Cardiology, vol. 46, pp. 38, 2017.
[32] A. Cribier, H. Eltchaninoff, A. Bash et al., “Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description,” Circulation, vol. 106, no. 24, pp. 3006-8, Dec 10, 2002.
[33] M. Coylewright, J. K. Forrest, J. M. McCabe et al., “TAVR in Low-Risk Patients: FDA Approval, the New NCD, and Shared Decision-Making,” J Am Coll Cardiol, vol. 75, no. 10, pp. 1208-1211, Mar 17, 2020.
[34] K. Al-Azizi, M. Hamandi, and M. Mack, “Clinical trials of transcatheter aortic valve replacement,” Heart, vol. 105, no. Suppl 2, pp. s6-s9, Mar, 2019.
[35] H. Thiele, T. Kurz, H. J. Feistritzer et al., “Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial,” Eur Heart J, vol. 41, no. 20, pp. 1890-1899, May 21, 2020.
[36] G. Costa, E. Criscione, C. Reddavid et al., “Balloon-expandable versus self-expanding transcatheter aortic valve replacement: a comparison and evaluation of current findings,” Expert Rev Cardiovasc Ther, vol. 18, no. 10, pp. 697-708, Oct, 2020.
[37] A. Mitsis, C. Eftychiou, N. Eteokleous et al., “Current Trends in TAVI Access,” Curr Probl Cardiol, vol. 46, no. 12, pp. 100844, Dec, 2021.
[38] G. A. Fishbein, and M. C. Fishbein, “Pathology of the Aortic Valve: Aortic Valve Stenosis/Aortic Regurgitation,” Curr Cardiol Rep, vol. 21, no. 8, pp. 81, Jul 5, 2019.
[39] F. J. Schoen, and R. J. Levy, “Calcification of tissue heart valve substitutes: progress toward understanding and prevention,” Ann Thorac Surg, vol. 79, no. 3, pp. 1072-80, Mar, 2005.
[40] R. R. Makkar, G. Fontana, H. Jilaihawi et al., “Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves,” N Engl J Med, vol. 373, no. 21, pp. 2015-24, Nov 19, 2015.
[41] S. Pfensig, S. Kaule, M. Sämann et al., “Assessment of heart valve performance by finite-element design studies of polymeric leaflet-structures,” Current Directions in Biomedical Engineering, vol. 3, no. 2, pp. 631-634, 2017.
[42] P. S. Gunning, T. J. Vaughan, and L. M. McNamara, “Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation,” Ann Biomed Eng, vol. 42, no. 9, pp. 1989-2001, Sep, 2014.
[43] P. C. Patsalis, A. Kloppe, B. Plicht et al., “Undersizing but overfilling eliminates the gray zones of sizing for transcatheter aortic valve replacement with the balloon-expandable bioprosthesis,” Int J Cardiol Heart Vasc, vol. 30, pp. 100593, Oct, 2020.
[44] E. Lifesciences, "Edwards SAPIEN 3 Kit -Transapical and Transaortic Instructions for Use," 2017.
[45] SIMULIA, “Simulation of Implantable Nitnol Stents,” Abaqus Technology Brief, 2010.
[46] MDG麥德凱生科股份有限公司. "醫療等級原料評估試驗USP 88," 2022/6/5, 2022; https://www.medgaea.com.tw/testing-and-service/medical-equipment/usp-88.
[47] P. BRANCA, A, STRONG, AIR PERMEABLE MEMBRANES OF POLYTETRAFLUOROETHYLENE, E. P. Office, 1996.
[48] Y. Roina, F. Auber, D. Hocquet et al., “ePTFE-based biomedical devices: An overview of surgical efficiency,” J Biomed Mater Res B Appl Biomater, vol. 110, no. 2, pp. 302-320, Feb, 2022.
[49] T.-W. Kuo, “Design and Development of Interventional Aortic Quadric-surfaced Prosthetic Heart Valve,” Department of Mechanical Engineering, College of Engineering, National Taiwan University, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90491-
dc.description.abstract心臟瓣膜疾病為瓣膜因老化、感染、天生缺陷或鈣化等異常表現,導致患者心臟的血液輸送量下降,影響運動或日常生活、造成暈眩或昏厥,甚至引起其他種類心臟疾病。由於心臟瓣膜疾病和年齡有顯著相關,年長者罹患心臟瓣膜疾病的比率越高。隨著高齡社會全球化,心臟瓣膜疾病也變得普遍。
心臟瓣膜主要治療手段為更換人工心臟瓣膜,而目前主流的選擇之一就是經導管人工心臟瓣膜。和傳統開心手術比較,經導管人工心臟瓣膜最大的優勢在於快速簡單的手術過程,和小創口恢復快的導管手術。然而這項技術在近十年內才獲得 FDA 許可,目前市面上經導管人工心臟瓣膜的選擇很也少。有鑑於此,本研究針對人工心臟瓣膜進行更多元的設計,藉由模擬分析與流場實證,探討自擴張人工心臟瓣膜的設計與臨床性質之關聯。相較於較短壽命的商業用生物性瓣膜,本研究重於較少被討論的人工材質瓣膜,期望能延長瓣膜的使用壽命。
本研究進行了經導管自擴張人工心臟瓣膜的完整設計與模擬。在支架方面,建立參數化設定,並針對支架的應變和徑向支撐力進行模擬,以確保支架的基本性能具備製造與臨床的標準;在瓣膜方面,設計了六款全新瓣膜設計,探索瓣膜幾何的各式可能性,並和二次曲面為基底的四款設計一起進行模擬比較。同時也將其中一款全新的瓣膜建置成參數化模型,並以三項參數的組合變化對瓣膜特性進行更詳細的探討。所有的瓣膜設計都以同樣的流程進行模擬,包括使用兩種不同材料:ePTFE 與 ePTFE+PET 薄膜,進行瓣口開啟與閉合的模擬。最後在實驗階段,針對其中一款瓣膜設計製造出兩種材料的瓣膜雛型品,並建置基本的流場驅動其開合運動,作為和模擬結果的對照。
zh_TW
dc.description.abstractHeart valve diseases are the dysfunction of heart valves caused by deterioration, infection, calcification, or congenital malformations. Patients with heart valve diseases suffer from decreased exercise capacity, syncope, and dyspnea. It may also cause other heart disease complications. Heart valve diseases are highly related to age. With world population aging, the prevalence of heart valve diseases also increases.
The main treatment of heart valve diseases is replacing native dysfunction valves with prosthetic valves, and the one of the main choices is transcatheter aortic valve replacement (TAVR). Compared with the traditional surgical valve replacement, the intervention treatment inplants the prosthetic valve through a catheter, which enables fast and simple surgical process, minimal wound and fast recovery. The TAVR treatment was approved for usage in 2014, less than a decade ago. The commercial models are still very limited compared to the booming demand. Thus, this research aims to provide a more diverse design to transcatheter valves. With the design, simulation and experiment of the transcatheter prosthetic valve, the relation between design concept and clinical performance is studied, and the understanding toward geometric features of TAVR valves is deepened. Instead of the bio-tissue membranes most commercial products choose, this research focused on less studied artificial membrane materials, in hope of increasing the durability of TAVR.
This research covers the complete design and simulation of TAVR, including the stent and valve parts. For the stent, a parametric design model is built, and the simulation effort focuses on the strain and radial force of the stent. For the valve part, six original designs were proposed and studied along with 4 second-order-surface valves. One of the new designs is turned into a parametric model, and the properties of valves are studied based on three main design parameters. All the valve simulations are done based on the same process, with two different materials: ePTFE and ePTFE+PET. Lastly, an experiment is constructed with a selected valve prototype. The flow field experiment result is then compared with the simulation results.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:19:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:19:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 疾病介紹 2
1.2.1 心臟瓣膜與解剖 2
1.2.2 心臟瓣膜疾病 4
1.2.3 心臟瓣膜疾病治療手段與考量 6
1.3 研究動機與目的 7
1.4 研究內容 8
第二章 文獻探討 9
2.1 心臟瓣膜療法發展 9
2.2 經導管人工心臟瓣膜手術 14
2.3 經導管心臟瓣膜性質 16
第三章 研究方法 18
3.1 支架設計 18
3.1.1 支架設計限制 18
3.1.2 支架設計方法與參數 20
3.2 支架模擬 23
3.2.1 材料性質 23
3.2.2 模型設置 25
3.2.3 觀察指標 27
3.3 瓣膜設計 27
3.3.1 瓣膜材料 27
3.3.2 瓣膜幾何設計與尺寸 28
3.3.3 參數化設計 29
3.4 瓣膜模擬 31
3.4.1 模型設置 32
3.4.2 觀察指標 34
3.4.3 模擬項目 35
3.5 雛型品製造與實驗架設 36
第四章 研究結果 38
4.1 支架設計結果 38
4.2 支架模擬結果 40
4.2.1 等效塑性應變分析 41
4.2.2 徑向支撐強度分析 42
4.3 瓣膜設計結果 44
4.3.1 各式瓣膜設計結果 44
4.3.2 參數化瓣膜設計結果 46
4.4 瓣膜模擬結果 47
4.4.1 各式瓣膜模擬結果 48
4.4.2 參數化瓣膜模擬結果 60
4.5 實驗結果 66
第五章 結論與未來展望 68
5.1 結論 68
5.2 未來展望 69
參考資料 71
-
dc.language.isozh_TW-
dc.subject經導管zh_TW
dc.subject醫療器材zh_TW
dc.subject有限元素法zh_TW
dc.subject心臟瓣膜zh_TW
dc.subject介入式瓣膜zh_TW
dc.subjectTAVRen
dc.subjectTranscatheter aortic valve replaceen
dc.subjectNitinolen
dc.subjectFinite element analysisen
dc.subjectAortic valveen
dc.subjectProsthetic heart valveen
dc.title經導管人工主動脈瓣之設計與模擬zh_TW
dc.titleDesign and Simulation of Transcatheter Aortic Prosthetic Valvesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊士進;陳湘鳳zh_TW
dc.contributor.oralexamcommitteeShih-Chin Yang;Shana Smithen
dc.subject.keyword醫療器材,有限元素法,心臟瓣膜,介入式瓣膜,經導管,zh_TW
dc.subject.keywordFinite element analysis,Nitinol,Transcatheter aortic valve replace,TAVR,Prosthetic heart valve,Aortic valve,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202201629-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-07-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf7.52 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved