Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90486
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群zh_TW
dc.contributor.advisorPei-Chun Linen
dc.contributor.author蕭尚亞zh_TW
dc.contributor.authorShang-Ya Hsiaoen
dc.date.accessioned2023-10-03T16:18:10Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation[1] 林郁衡, "高動態多控制模式研磨工具開發," 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2021.
[2] C. H. Liu, A. Chen, C. C. A. Chen, and Y.-T. Wang, "Grinding force control in an automatic surface finishing system," Journal of Materials Processing Technology, vol. 170, no. 1, pp. 367-373, 2005/12/14, doi: https://doi.org/10.1016/j.jmatprotec.2005.06.002.
[3] X. Xu, D. Zhu, H. Zhang, S. Yan, and H. Ding, "Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades," Chinese Journal of Aeronautics, vol. 32, no. 10, pp. 2368-2382, 2019/10/01, doi: https://doi.org/10.1016/j.cja.
[4] Y. Sun, D. J. Giblin, and K. Kazerounian, "Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 1, pp. 204-210, 2009/02/01, doi: https://doi.org/10.1016/j.rcim.2007.11.005.
[5] F. Nagata et al., "Basic performance of a desktop NC machine tool with compliant motion capability," in 2008 IEEE International Conference on Mechatronics and Automation, 5-8 Aug. 2008, pp. 83-88, doi: 10.1109/ICMA.2008.4798730.
[6] A. Robertsson et al., "Implementation of Industrial Robot Force Control Case Study: High Power Stub Grinding and Deburring," in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006, pp. 2743-2748, doi: 10.1109/IROS.2006.282000.
[7] A. E. K. Mohammad, J. Hong, and D. Wang, "Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach," Robotics and Computer-Integrated Manufacturing, vol. 49, pp. 54-65, 2018/02/01, doi: https://doi.org/10.1016/j.rcim.2017.05.011.
[8] X. Xie and L. Sun, "Force control based robotic grinding system and application," in 2016 12th World Congress on Intelligent Control and Automation (WCICA), 12-15 June 2016, pp. 2552-2555, doi: 10.1109/WCICA.2016.7578828.
[9] X. Xu, W. Chen, D. Zhu, S. Yan, and H. Ding, "Hybrid active/passive force control strategy for grinding marks suppression and profile accuracy enhancement in robotic belt grinding of turbine blade," Robotics and Computer-Integrated Manufacturing, vol. 67, p. 102047, 2021/02/01, doi: https://doi.org/10.1016/j.rcim.2020.102047.
[10] Y. Pan et al., "New insights into the methods for predicting ground surface roughness in the age of digitalisation," Precision Engineering, vol. 67, pp. 393-418, 2021/01/01, doi: https://doi.org/10.1016/j.precisioneng.2020.11.001.
[11] U. S. Patnaik Durgumahanti, V. Singh, and P. Venkateswara Rao, "A New Model for Grinding Force Prediction and Analysis," International Journal of Machine Tools and Manufacture, vol. 50, no. 3, pp. 231-240, 2010/03/01, doi: https://doi.org/10.1016/j.ijmachtools.2009.12.004.
[12] D. Zhu, X. Xu, Z. Yang, K. Zhuang, S. Yan, and H. Ding, "Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments," Tribology International, vol. 120, pp. 93-98, 2018/04/01, doi: https://doi.org/10.1016/j.triboint.2017.12.043.
[13] J. Qi and B. Chen, "Surface Roughness Prediction Based on the Average Cutting Depth of Abrasive Grains in Belt Grinding," in 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 14-16 Sept. 2018, pp. 169-174, doi: 10.1109/ICMCCE.2018.00042.
[14] M. Sabourin, F. Paquet, B. Hazel, J. Côté, and P. Mongenot, "Robotic approach to improve turbine surface finish," in 2010 1st International Conference on Applied Robotics for the Power Industry, 5-7 Oct. 2010, pp. 1-6, doi: 10.1109/CARPI.2010.5624446.
[15] Y. Ren, Z. Chen, Y. Liu, Y. Gu, M. Jin, and H. Liu, "Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics," Journal of the Franklin Institute, vol. 354, no. 17, pp. 7767-7793, 2017/11/01, doi: https://doi.org/10.1016/j.jfranklin.2017.09.015.
[16] S. Yixu, Y. Hongjun, and L. Hongbo, "Intelligent Control for a Robot Belt Grinding System," IEEE Transactions on Control Systems Technology, vol. 21, no. 3, pp. 716-724, 2013, doi: 10.1109/TCST.2012.2191587.
[17] Z. Lu, S. Kawamura, and A. A. Goldenberg, "Sliding mode impedance control and its application to grinding tasks," in Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91, 3-5 Nov. 1991, pp. 350-355 vol.1, doi: 10.1109/IROS.1991.174475.
[18] A. Wahrburg, J. Bös, K. D. Listmann, F. Dai, B. Matthias, and H. Ding, "Motor-Current-Based Estimation of Cartesian Contact Forces and Torques for Robotic Manipulators and Its Application to Force Control," IEEE Transactions on Automation Science and Engineering, vol. 15, no. 2, pp. 879-886, 2018, doi: 10.1109/TASE.2017.2691136.
[19] W.-L. Zhu and A. Beaucamp, "Compliant grinding and polishing: A review," International Journal of Machine Tools and Manufacture, vol. 158, p. 103634, 2020/11/01, doi: https://doi.org/10.1016/j.ijmachtools.2020.103634.
[20] T. Furukawa, D. C. Rye, M. W. M. G. Dissanayake, and A. J. Barratt, "Automated polishing of an unknown three-dimensional surface," Robotics and Computer-Integrated Manufacturing, vol. 12, no. 3, pp. 261-270, 1996/09/01/ 1996, doi: https://doi.org/10.1016/0736-5845(96)00004-X.
[21] F. Tian, C. Lv, Z. Li, and G. Liu, "Modeling and control of robotic automatic polishing for curved surfaces," CIRP Journal of Manufacturing Science and Technology, vol. 14, pp. 55-64, 2016/08/01, doi: https://doi.org/10.1016/j.cirpj.2016.05.010.
[22] Y. L. Kuo, S. Y. Huang, and C. C. Lan, "Sensorless Force Control of Automated Grinding/Deburring Using an Adjustable force regulation mechanism," in 2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019, pp. 9489-9495, doi: 10.1109/ICRA.2019.8794058.
[23] K. Seki, Y. Shinohara, M. Iwasaki, H. Chinda, and M. Takahashi, "High precision force control of pneumatic cylinders considering disturbance suppression with specific frequency," in 2011 IEEE International Conference on Mechatronics, 13-15 April 2011, pp. 937-942, doi: 10.1109/ICMECH.2011.5971251.
[24] L. Liao, F. Xi, and K. Liu, "Modeling and control of automated polishing/deburring process using a dual-purpose compliant toolhead," International Journal of Machine Tools and Manufacture, vol. 48, no. 12, pp. 1454-1463, 2008/10/01, doi: https://doi.org/10.1016/j.ijmachtools.2008.04.009.
[25] X. Zhang, H. Chen, N. Yang, H. Lin, and K. He, "A structure and control design of constant force polishing end actuator based on polishing robot," in 2017 IEEE International Conference on Information and Automation (ICIA), 18-20 July 2017, pp. 764-768, doi: 10.1109/ICInfA.2017.8079007.
[26] F. Chen, H. Zhao, D. Li, L. Chen, C. Tan, and H. Ding, "Contact force control and vibration suppression in robotic polishing with a smart end effector," Robotics and Computer-Integrated Manufacturing, vol. 57, pp. 391-403, 2019/06/01, doi: https://doi.org/10.1016/j.rcim.2018.12.019.
[27] Z. Hu, N. Ling, J. Pan, and W. Jiang, Study of PZT actuated deformable aspheric polishing lap (AOMATT 2008 - 4th International Symposium on Advanced Optical Manufacturing). SPIE, 2009.
[28] F. Chen, H. Zhao, D. Li, L. Chen, C. Tan, and H. Ding, "Robotic grinding of a blisk with two degrees of freedom contact force control," The International Journal of Advanced Manufacturing Technology, vol. 101, no. 1, pp. 461-474, 2019/03/01 2019, doi: 10.1007/s00170-018-2925-6.
[29] Y. Nogi, S. Sakaino, and T. Tsuji, "Force Control of Grinding Process Based on Frequency Analysis," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3250-3256, 2022, doi: 10.1109/LRA.2022.3146578.
[30] S. Lin, Q. Wang, Z. Jiang, and Y. Yin, "Online force control of large optical grinding machine for brittle materials assisted by force prediction," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 234, no. 1-2, pp. 14-26, 2020/01/01, doi: 10.1177/0954405419841523.
[31] D. Zhu et al., "Robotic grinding of complex components: A step towards efficient and intelligent machining – challenges, solutions, and applications," Robotics and Computer-Integrated Manufacturing, vol. 65, p. 101908, 2020/10/01, doi: https://doi.org/10.1016/j.rcim.2019.101908.
[32] Y.-H. Lin, M.-W. Liu, and P.-C. Lin, "Development of a Grinding Tool with Contact-Force Control Capability," Electronics, vol. 11, no. 5, doi: 10.3390/electronics11050685.
[33] 摩新國際科技. "電磁波吸波材." https://www.moxiecorp.com.tw/htmfiles/y_shield_products_absorb.html (accessed.
[34] N. instrutments, "LabVIEW FPGA Module." [Online]. Available: https://www.ni.com/zh-tw/shop/software/products/labview-fpga-module.html.
[35] 游崴舜, "可側傾雙輪機器人之運動控制與其內部機器人泛用機電系統架構," 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2012.
[36] maxon. "控制器." https://www.maxongroup.com.tw/maxon/view/product/control/4-Q-Servokontroller/422969 (accessed.
[37] hsmagnets. "voice-coil-motor-magnets." https://www.hsmagnets.com/blog/voice-coil-motor-magnets/ (accessed.
[38] moticont. "Hollow Core Linear Voice Coil Motors." http://www.moticont.com/HVCM-095-038-051-01.htm (accessed.
[39] ariwatch. "Voice Coil Actuators." http://ariwatch.com/VS/VoiceCoils/ (accessed.
[40] Y. Fujii and S. Hashimoto, "Evaluation of the dynamic properties of a Voice Coil Motor (VCM)," in 2007 14th International Conference on Mechatronics and Machine Vision in Practice, 4-6 Dec. 2007, pp. 57-61, doi: 10.1109/MMVIP.2007.4430715.
[41] Y. Fujii, K. Maru, and T. Jin, "Method for evaluating the electrical and mechanical characteristics of a voice coil actuator," Precision Engineering, vol. 34, no. 4, pp. 802-806, 2010/10/01, doi: https://doi.org/10.1016/j.precisioneng.2010.04.003.
[42] K. Worden et al., "Identification of pre-sliding and sliding friction dynamics: Grey box and black-box models," Mechanical Systems and Signal Processing, vol. 21, no. 1, pp. 514-534, 2007/01/01, doi: https://doi.org/10.1016/j.ymssp.2005.09.004.
[43] R. Pintelon and J. Schoukens, System identification: a frequency domain approach. John Wiley & Sons, 2012.
[44] P. Rik and S. Johan, "Design of Excitation Signals," in System Identification: A Frequency Domain Approach: IEEE, 2012, pp. 151-175.
[45] O. University. "s-DomainAnalysis:Poles,Zeros,andBodePlots." chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://global.oup.com/us/companion.websites/fdscontent/uscompanion/us/static/companion.websites/9780199339136/Appendices/Appendix_F.pdf (accessed.
[46] M. Tomizuka, "Zero Phase Error Tracking Algorithm for Digital Control," Journal of Dynamic Systems, Measurement, and Control, vol. 109, no. 1, pp. 65-68, 1987, doi: 10.1115/1.3143822.
[47] MathWorks. "Getting Started with the Control System Designer." https://www.mathworks.com/help/control/ug/getting-started-with-the-control-system-designer.html (accessed.
[48] MathWorks. "Help Center." https://www.mathworks.com/help/control/ref/pid.html#mw_0c11d81f-51ab-4437-abb5-0614d7cea8df (accessed.
[49] M. I. o. Technology. "Forward and Backward Euler Method." https://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node3.html (accessed.
[50] resourcium. "Sensitivity (Control Systems)." https://resourcium.org/topic/sensitivity-control-systems#:~:text=The%20sensitivity%20function%20tells%20us,range%20of%201.3%20to%202. (accessed.
[51] T. Mi-Ching and Y. Wu-Sung, "Design of a plug-in type repetitive controller for periodic inputs," IEEE Transactions on Control Systems Technology, vol. 10, no. 4, pp. 547-555, 2002, doi: 10.1109/TCST.2002.1014674.
[52] Q. Zhang et al., "Robust plug-in repetitive control for speed smoothness of cascaded-PI PMSM drive," Mechanical Systems and Signal Processing, vol. 163, p. 108090, 2022/01/15, doi: https://doi.org/10.1016/j.ymssp.2021.108090.
[53] K. Srinivasan and F. R. Shaw, "Analysis and Design of Repetitive Control Systems using the Regeneration Spectrum," in 1990 American Control Conference, 23-25 May 1990, pp. 1150-1155, doi: 10.23919/ACC.1990.4790923.
[54] B. A. Francis and W. M. Wonham, "The internal model principle for linear multivariable regulators," Applied Mathematics and Optimization, vol. 2, no. 2, pp. 170-194, 1975/06/01, doi: 10.1007/BF01447855.
[55] Y. Wang, F. Gao, and F. J. Doyle, "Survey on iterative learning control, repetitive control, and run-to-run control," Journal of Process Control, vol. 19, no. 10, pp. 1589-1600, 2009/12/01, doi: https://doi.org/10.1016/j.jprocont.2009.09.006.
[56] Y. Wu-Sung and T. Mi-Ching, "Analysis and estimation of tracking errors of plug-in type repetitive control systems," IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1190-1195, 2005, doi: 10.1109/TAC.2005.852553.
[57] L. Wu, X. Qiu, and Y. Guo, "A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems," Mechanical Systems and Signal Processing, vol. 106, pp. 13-23, 2018/06/01/ 2018, doi: https://doi.org/10.1016/j.ymssp.2017.12.021.
[58] B. D. O. Anderson, "The small-gain theorem, the passivity theorem and their equivalence," Journal of the Franklin Institute, vol. 293, no. 2, pp. 105-115, 1972/02/01, doi: https://doi.org/10.1016/0016-0032(72)90150-0.
[59] C. Yi-De, F. Chyun-Chau, and T. Pi-Cheng, "Application of voice coil motors in active dynamic vibration absorbers," IEEE Transactions on Magnetics, vol. 41, no. 3, pp. 1149-1154, 2005, doi: 10.1109/TMAG.2004.843329.
[60] 達明. "文件." https://www.tm-robot.com/en/docs-tag/tmflow/ (accessed.
[61] T. Robot. https://www.tm-robot.com/zh-hant/regular-payload/ (accessed.
[62] 劉民偉, "自動化拋光研磨系統之路徑生成、表面瑕疵檢測及回拋回磨修補," 碩士論文, 機械工程學系, 國立臺灣大學, 台北, 2021.
[63] 生堯砥研seya. "攸關生命安全的資訊--砂輪最高使用速度." https://www.seya.com.tw/knowledge_detail.php?id=292 (accessed.
[64] BOSCH. "博世專業電動工具與配件." https://www.bosch-pt.com.tw/tw/zh/searchfrontend/?q=%E7%A0%82%E8%BC%AA%E6%A9%9F (accessed.
[65] P. Puerto, R. Fernández, J. Madariaga, J. Arana, and I. Gallego, "Evolution of Surface Roughness in Grinding and its Relationship with the Dressing Parameters and the Radial Wear," Procedia Engineering, vol. 63, pp. 174-182, 2013/01/01, doi: https://doi.org/10.1016/j.proeng.2013.08.181.
[66] 台灣三豐儀器. https://www.mitutoyo.com.tw/web/product/product_in.jsp?pd_no=PD1592634480429 (accessed.
[67] Mitutoyo. "Measurement » Surface Roughness Measuring Instruments » Surftest SJ-410." https://shop.mitutoyo.eu/web/mitutoyo/en/mitutoyo/1292249401020/Surftest%20SJ-411%20%5Bmm%5D/$catalogue/mitutoyoData/PR/178-580-11D/index.xhtml (accessed.
[68] 賴景裕, "使用基於接觸力資訊的資料驅動模型預測研磨之表面粗糙度," 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90486-
dc.description.abstract本研究使用實驗室開發的自動化研磨系統進行研磨實驗,優化研磨工具性能以達到更好的研磨品質。首先針對舊版的研磨工具,又稱mini-robot,在研磨過程中無法穩定維持轉速以及六軸力規受干擾的問題進行了硬體改版,並取得了顯著的進步。改版後的mini-robot在研磨表現方面有了明顯的改善。因應硬體改變進行系統識別實驗,以確保系統的穩定性和韌性。
在系統識別的過程中,為了避免雜訊和力感測器的延遲特性對結果產生影響,採用了單一頻率個別掃頻的方式進行頻域系統識別。根據識別結果調整各控制器的參數,包括比例積分控制器(PI controller)、重複式控制器(repetitive controller)和峰值濾波器(peak filter)。其中,比例積分控制器(PI controller)的目標是穩定控制系統,而重複式控制器(repetitive controller)和峰值濾波器(peak filter)則用於抑制研磨輪旋轉引起的周期性震動。兩種控制器具有不同的特性,重複式控制器(repetitive controller)可抑制基頻與倍頻的雜訊,因為對高頻的雜訊也有響應,較容易造成系統不穩定。峰值濾波器(peak filter)抑制單頻率的雜訊,在使用時較不會產生不穩定的情形。
在評估不同控制器組合的系統時,考慮到砂布輪的磨耗問題進行了砂布輪的磨合實驗,找出適合的研磨正向力數值以及數據較穩定的研磨次序區段。此外,為了避免砂布輪個體差異對結果的誤判,我們依據多組實驗結果的統計數據,對控制器的效果進行了評估。最終,使用比例積分控制器(PI controller)、重複式控制器(repetitive controller)組成的控制系統使得mini-robot在研磨過程中能夠將力震盪控制在正負1N以內。也將mini-robot作為被動式吸震的研磨工具使用,有許多研究是以此種設計進行研磨。雖然被動式吸震的研磨工具因為不需要補償用的致動器製作成本較低,但無法補償機械手臂的軌跡誤差,本研究所使用的主動式的力補償研磨工具因為使用音圈馬達,可有效補償位置誤差。
研磨結果以表面粗糙度Ra值為基準,相較於之前的結果(Ra值平均值為2.198um),改進後的mini-robot表現更好,平均Ra值達1.85um,下降了約0.3um。然而在抑制方面仍有進一步的改進空間,通過改善硬體結構的剛性並配合控制器的調整有望取得更好的研磨效果。綜合而言,本研究有效提高mini-robot的研磨性能,並使其能夠在研磨過程中保持穩定的力震盪,從而獲得更好的研磨表面品質。
zh_TW
dc.description.abstractThis study focuses on optimizing the performance of a robotic grinding tool developed in the laboratory to achieve better grinding quality. The initial version of the grinding tool, referred to as the mini-robot, faced challenges in maintaining stable rotational speed and dealing with disturbances in the six-axis force sensor during the grinding process. To address these issues, hardware modifications were made to the mini-robot, resulting in significant improvements in its grinding performance. System identification experiments were conducted to ensure stability and robustness. Frequency domain system identification techniques using single-frequency sweeping were employed.
Based on the identified system characteristics, various control parameters were adjusted, including PI controllers, repetitive controllers, and peak filters. The PI controller aimed to stabilize the control system, while the repetitive controller and peak filter were implemented to suppress the periodic oscillations caused by the rotation of the grinding wheel. These controllers exhibited distinct characteristics, with the repetitive controller effectively suppressing noise at fundamental and harmonic frequencies, although it had a higher risk of instability due to its response to high-frequency noise. The peak filter targeted the suppression of specific frequency components and demonstrated greater stability during operation. In evaluating the performance of different control combinations, wear experiments were conducted to address the wear-related issues of the grinding wheel, determining suitable grinding force values and stable grinding sequences. To mitigate the impact of individual variations in the grinding wheels on the results, statistical data from multiple experiments were used to assess the effectiveness of the controllers. Ultimately, the combination of PI and repetitive controllers enabled the mini-robot to maintain force oscillations within ±1N during the grinding process. The mini-robot was also utilized as a passively dampened grinding tool, which has been commonly adopted in various studies. However, passive dampening tools cannot compensate for trajectory errors caused by the robotic arm, while the actively compensated grinding tool used in this study, employing voice coil motors, effectively compensated for position errors.
The grinding results were evaluated based on surface roughness (Ra value). Compared to previous results (average Ra value of 2.198 μm), the improved mini-robot demonstrated better performance with an average Ra value of 1.85 μm, representing a reduction of approximately 0.3 μm. However, further improvements are still possible. By improving the rigidity of the hardware structure and making adjustments to the controller, it is expected to achieve better grinding results. In summary, this study successfully enhanced the grinding performance of the mini-robot, enabling stable force oscillations during the grinding process and yielding improved surface quality.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:18:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:18:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 viii
圖目錄 xii
表目錄 xxiii
符號表 xxiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 貢獻 9
1.5 論文架構 10
第二章 Mini-robot 系統設計 12
2.1 前言 12
2.1.1 致動器更新 13
2.1.2 結構設計更新 15
2.2 Mini-robot 機電系統架構 17
2.3 設計改版結論 22
第三章 Mini-robot 系統識別 23
3.1 前言 23
3.2 動力學分析 24
3.2.1 音圈馬達物理模型分析 24
3.2.2 系統動力學模型分析 26
3.3 系統識別 27
3.3.1 系統識別實驗設計 29
3.3.2 系統識別實驗 31
3.3.3 系統識別實驗結果分析 34
第四章 研磨力控制系統 41
4.1 控制架構 41
4.2 比例積分控制器(PI controller) 43
4.2.1 比例積分控制器(PI controller)控制參數設計 43
4.2.2 比例積分控制器(PI controller)控制系統分析 44
4.3 重複式控制器(repetitive controller) 47
4.3.1 重複式控制器(repetitive controller)控制參數設計 49
4.3.2 重複式控制器(repetitive controller)控制系統分析 53
4.4 峰值濾波器(peak filter) 56
4.4.1 峰值濾波器(peak filter)控制參數設計 56
4.4.2 峰值濾波器(peak filter)控制系統分析 56
第五章 金屬研磨實驗 59
5.1 金屬研磨實驗平台介紹 59
5.1.1 機械手臂與Mini-robot協作平台 60
5.1.2 研磨金屬工件與夾具 63
5.1.3 研磨輪磨合實驗 65
5.2 力控制研磨系統實驗正向力震盪結果分析 71
5.2.1 比例積分控制器(PI controller) 72
5.2.2 重複式控制器(repetitive controller) 77
5.2.3 峰值濾波器(peak filter) 84
5.2.4 定位置研磨 87
5.2.5 力控制研磨系統實驗總結 94
5.3 正向力控制與研磨表面粗度關係 95
5.3.1 研磨表面粗度測量法與評估法 95
5.3.2 研磨表面粗度結果 98
5.3.3 正向力控制表面粗糙度成果總結 100
第六章 結論與未來展望 102
6.1 結論 102
6.2 未來展望 103
附錄 104
參考文獻 113
-
dc.language.isozh_TW-
dc.subject自動化研磨系統zh_TW
dc.subject表面粗糙度zh_TW
dc.subject系統識別zh_TW
dc.subject力控制研磨zh_TW
dc.subject主動式力控制研磨工具zh_TW
dc.subjectautomatic grinding systemen
dc.subjectforce control grindingen
dc.subjectsurface roughnessen
dc.subjectactive force control grinding toolen
dc.subjectsystem identificationen
dc.title應用於高動態研磨工具之研磨力控制系統開發zh_TW
dc.titleDevelopment of a Grinding Force Control System for High-Dynamic Grinding Toolsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee顏炳郎;連豊力zh_TW
dc.contributor.oralexamcommitteePing-Lang Yen;Feng-Li Lianen
dc.subject.keyword主動式力控制研磨工具,力控制研磨,自動化研磨系統,系統識別,表面粗糙度,zh_TW
dc.subject.keywordactive force control grinding tool,force control grinding,automatic grinding system,system identification,surface roughness,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202303046-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
8.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved