Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90480
標題: 基於混合神經網絡之惡意程式偵測與分類-以 Android 作業系統為例
Android Malware Detection and Classification with Hybrid Deep Neural Network
作者: 蔡苑萍
Yuan-Ping Tsai
指導教授: 曹承礎
Seng-Cho Chou
關鍵字: Android 惡意軟體,圖神經網路,卷積神經網路,深度學習,惡意軟體識別,惡意軟體分類,
Android malware,Graph neural network,Convolution neural network,Deep learning,Malware detection,Malware classification,
出版年 : 2023
學位: 碩士
摘要: 在現今行動作業系統市場上,Android是目前用戶人數最多的,由於開放且自由的開發環境,任何開發者皆能夠在Android平台上自行開發APK檔,然而,這樣的開放性及自由性也產生巨大的資訊安全風險,許多有心人士基於各種原因將惡意程式潛藏於APK檔中,這樣的惡意程式攻擊造成許多危害,因此,能夠精準且有效率的偵測及分類惡意程式的方法,在資訊安全領域研究上顯得極為重要。

本研究欲提出一能夠精準且有效率的去偵測及分類惡意程式的方法,能夠找到惡意程式與正常程式之間潛藏的關係,並且透過這樣的關係去學習惡意程式的行為模式,最終能夠正確識別及分類惡意程式。

本研究預計使用基於卷積神經網絡架構及基於圖神經網絡架構的混合模型來訓練惡意程式資料,並使用一公開大規模惡意軟體資料集 — MalNet-image tiny進行實驗,針對資料集中的圖像資料格式、多種的惡意程式類型及混合模型使用上,去設計多種可實驗的場景。最終在評估模型及實驗結果方面,在結果表現方面預計與過往相關的研究以及基準實驗結果進行比較。
In today's mobile operating system market, Android has the largest user base. Due to its open and flexible development environment, any developer can develop APK files on the Android platform. However, such openness and flexibility also pose significant information security risks. Malware can be hidden within APK files for various reasons, resulting in various harms. Therefore, it is crucial to have accurate and efficient methods for detecting and classifying malware in the field of information security research.

This study aims to propose a precise and efficient method for detecting and classifying malware by uncovering the hidden relationships between malware and benign. Through these relationships, the study seeks to learn the behavioral patterns of malware and ultimately achieve accurate identification and classification.

This study aims to employ a hybrid model based on convolutional neural network (CNN) and graph neural network (GNN) architectures to train on malware data. The experiment will be conducted using a publicly available large-scale dataset called MalNet, which encompasses a diverse range of malware. The dataset includes various image data formats and covers multiple types of malware, allowing for the design of multiple experimental scenarios incorporating the hybrid model.

Finally, in terms of evaluating the models and experimental results, a comparison will be made with relevant previous studies and benchmark experiments.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90480
DOI: 10.6342/NTU202301416
全文授權: 未授權
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
2.76 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved