Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90475Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 周錫增 | zh_TW |
| dc.contributor.advisor | Hsi-Tseng Chou | en |
| dc.contributor.author | 潘西和 | zh_TW |
| dc.contributor.author | Siddhartha Panigrahi | en |
| dc.date.accessioned | 2023-10-03T16:15:06Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] Z. N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Eds., Handbook of Antenna Technologies. Springer Singapore, 2016. [Online]. Available: https://doi.org/10.1007%2F978-981-4560-44-3
[2] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the art in 60-GHz integrated circuits and systems for wireless communications,” Proceedings of the IEEE, vol. 99, no. 8, pp. 1390–1436, Aug. 2011. [Online]. Available: https://doi.org/10.1109/jproc.2011.2143650 [3] E. Rajo-Iglesias, M. Ferrando-Rocher, and A. U. Zaman, “Gap waveguide technology for millimeter-wave antenna systems,” IEEE Communications Magazine, vol. 56, no. 7, pp. 14–20, Jul. 2018. [Online]. Available: https://doi.org/10.1109/mcom.2018.1700998 [4] A. Dewantari, S.-Y. Jeon, S. Kim, S. Kim, J. Kim, and M.-H. Ka, “Comparison of array antenna designs for 77ghz radar applications,” in 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, aug 2016. [Online]. Available: https://doi.org/10.1109%2Fpiers.2016.7734587 [5] H. Zhang and A. Shamim, “Gain and efficiency enhancement of a 77 GHz on-chip antenna through AMC and superstrate package,” in 2018 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting. IEEE, jul 2018. [Online]. Available: https://doi.org/10.1109%2Fapusncursinrsm.2018.8608189 [6] Y. Yu, W. Hong, H. Zhang, J. Xu, and Z. H. Jiang, “Optimization and implementation of SIW slot array for both medium- and long-range 77 GHz automotive radar application,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3769–3774, jul 2018. [Online]. Available: https://doi.org/10.1109%2Ftap.2018.2823911 [7] T. Djerafi and K. Wu, “A low-cost wideband 77-GHz planar butler matrix in SIW technology,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4949–4954, oct 2012. [Online]. Available: https://doi.org/10.1109%2Ftap.2012.2207309 [8] N. Ranjkesh and M. Shahabadi, “Reduction of dielectric losses in substrate integrated waveguide,” Electronics Letters, vol. 42, no. 21, p. 1230, 2006. [Online]. Available: https://doi.org/10.1049/el:20061870 [9] F. Parment, A. Ghiotto, T.-P. Vuong, J.-M. Duchamp, and K. Wu, “Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1228–1238, Apr. 2015. [Online]. Available: https://doi.org/10.1109/tmtt.2015.2408593 [10] A. Belenguer, H. Esteban, and V. E. Boria, “Novel empty substrate integrated waveguide for high-performance microwave integrated circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 832–839, Apr. 2014. [Online]. Available: https://doi.org/10.1109/tmtt.2014.2309637 [11] A. Vosoogh, H. Zirath, and Z. S. He, “Novel air-filled waveguide transmission line based on multilayer thin metal plates,” IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 3, pp. 282–290, May 2019. [Online]. Available: https://doi.org/10.1109/tthz.2019.2905775 [12] N. Bayat-Makou and A. A. Kishk, “Contactless air-filled substrate integrated waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 6, pp. 2928–2935, Jun. 2018. [Online]. Available: https://doi.org/10.1109/tmtt. 2018.2818137 [13] H. Raza, J. Yang, P.-S. Kildal, and E. A. Alos, “Microstrip-ridge gap waveguide–study of losses, bends, and transition to WR-15,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 1943–1952, sep 2014. [Online]. Available: https://doi.org/10.1109%2Ftmtt.2014.2327199 [14] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 84–87, 2009. [Online]. Available: https://doi.org/10.1109/lawp.2008.2011147 [15] A. Berenguer, V. Fusco, D. E. Zelenchuk, D. Sanchez-Escuderos, M. Baquero-Escudero, and V. E. Boria-Esbert, “Propagation characteristics of groove gap waveguide below and above cutoff,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 27–36, jan 2016. [Online]. Available: https://doi.org/10.1109%2Ftmtt.2015.2504501 [16] D. Liu, U. Pfeiffer, J. Grzyb, and B. Gaucher, Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits. Wiley, 2009. [Online]. Available: https://books.google.com.tw/books?id=t5d4-_h1TBQC [17] D. Pozar, Microwave Engineering. Wiley, 2011. [Online]. Available: https://books.google.com.tw/books?id=_YEbGAXCcAMC [18] C. Balanis, Rectangular cross-section waveguides and cavities, ser. Handbook of Antenna Technologies. Springer Singapore, 2016. [Online]. Available: https://books.google.com.tw/books?id=XJ7QrQEACAAJ [19] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6g and beyond,” IEEE Access, vol. 7, pp. 78 729–78 757, 2019. [Online]. Available: https://doi.org/10.1109/access.2019.2921522 [20] Y. Zhang and J. Mao, “An overview of the development of antenna-in-package technology for highly integrated wireless devices,” Proceedings of the IEEE, vol. 107, no. 11, pp. 2265–2280, Nov. 2019. [Online]. Available: https://doi.org/10.1109/jproc.2019.2933267 [21] K. Packard, “The origin of waveguides: A case of multiple rediscovery,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 961–969, Sep. 1984. [Online]. Available: https://doi.org/10.1109/tmtt.1984.1132809 [22] M. Bozzi, “Substrate integrated waveguide (SIW): An emerging technology for wireless systems,” in 2012 Asia Pacific Microwave Conference Proceedings. IEEE, Dec. 2012. [Online]. Available: https://doi.org/10.1109/apmc.2012.6421736 [23] E. Rajo-Iglesias and P.-S. Kildal, “Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides,” IET Microwaves, Antennas & Propagation, vol. 5, no. 3, p. 282, 2011. [Online]. Available: https: //doi.org/10.1049/iet-map.2010.0073 [24] A. Belenguer, H. Esteban, A. L. Borja, and V. E. Boria, “Empty SIW technologies: A major step toward realizing low-cost and low-loss microwave circuits,” IEEE Microwave Magazine, vol. 20, no. 3, pp. 24–45, Mar. 2019. [Online]. Available: https://doi.org/10.1109/mmm.2018.2885630 [25] V. Nova, C. B. Martin, J. A. Martinez, H. E. Gonzalez, J. M. Merello, A. B. Martinez, O. Monerris, and V. E. Boria, “Thermal stability analysis of filters in substrate integrated technologies under atmospheric pressure and vacuum conditions,” IEEE Access, vol. 8, pp. 118 072–118 082, 2020. [Online]. Available: https://doi.org/10.1109/access.2020.3004875 [26] K. W. Choi, E. Blackshear, E. Tremble, D. Stone, J. Audet, and K. Hirabayashi, “Hybrid prepreg conventional build-up laminate for 112gbit/s SerDes,” in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). IEEE, May 2019. [Online]. Available: https://doi.org/10.1109/ectc.2019.00183 [27] J. H. Lau and N.-C. Lee, “Failure analysis of solder joints,” in Assembly and Reliability of Lead-Free Solder Joints. Springer Singapore, 2020, pp. 485–520. [Online]. Available: https://doi.org/10.1007/978-981-15-3920-6_8 [28] S. Barth and A. K. Iyer, “A miniaturized uniplanar metamaterial-based EBG for parallel-plate mode suppression,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4, pp. 1176–1185, Apr. 2016. [Online]. Available: https://doi.org/10.1109/tmtt.2016.2532870 [29] D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2059–2074, 1999. [Online]. Available: https://doi.org/10.1109/22.798001 [30] D.-B. Lin, T.-H. Wang, and J.-W. Chiang, “Suppression of wideband simultaneous switching noise through application of a partial electromagnetic band-gap structure in multilayer printed circuit boards,” IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 4, pp. 1247–1255, Aug. 2020. [Online]. Available: https://doi.org/10.1109/temc.2019.2944967 [31] F. Yang and Y. Rahmat-Samii, The Cambridge RF and microwave engineering series: Electromagnetic band gap structures in antenna engineering, ser. The Cambridge RF and microwave engineering series. Cambridge, England: Cambridge University Press, Oct. 2008. [32] X.-F. Zhao, J.-Y. Deng, J.-Y. Yin, D. Sun, L.-X. Guo, X.-H. Ma, and Y. Hao, “Novel suspended-line gap waveguide packaged with stacked-mushroom EBG structures,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2447–2457, may 2021. [Online]. Available: https://doi.org/10.1109%2Ftmtt.2021.3068260 [33] D. Kern, D. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 8–17, jan 2005. [Online]. Available: https://doi.org/10.1109%2Ftap.2004.840540 [34] M. F. Abedin, M. Z. Azad, and M. Ali, “Wideband smaller unit-cell planar EBG structures and their application,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 903–908, Mar. 2008. [Online]. Available: https://doi.org/10.1109/tap.2008.917007 [35] B. qin Lin, Q. rong Zheng, and N. chang Yuan, “A novel planar PBG structure for size reduction,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 269–271, May 2006. [Online]. Available: https://doi.org/10.1109/lmwc.2006. 873507 [36] S. Barth and A. K. Iyer, “The MTM-EBG as a rigorous multiconductor model of the UC-EBG and approaches for miniaturization,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 2822–2831, Apr. 2022. [Online]. Available: https://doi.org/10.1109/tap.2021.3137499 [37] F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1509–1514, 1999. [Online]. Available: https://doi.org/10.1109/22.780402 [38] G. Goussetis, A. Feresidis, and J. Vardaxoglou, “Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 1, pp. 82–89, jan 2006. [Online]. Available: https://doi.org/10.1109%2Ftap.2005.861575 [39] M. E. Cos and F. L. Heras, “Novel uniplanar flexible artificial magnetic conductor,” Applied Physics A, vol. 109, no. 4, pp. 1031–1035, oct 2012. [Online]. Available: https://doi.org/10.1007%2Fs00339-012-7373-9 [40] F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar ompact photonic-bandgap (UC-PBG) structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2092–2098, 1999. [Online]. Available: https://doi.org/10.1109%2F22.798004 [41] A. Aminian, F. Yang, and Y. Rahmat-Samii, “In-phase reflection and EM wave suppression characteristics of electromagnetic band gap ground planes,” in IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450). IEEE, 2003. [Online]. Available: https: //doi.org/10.1109%2Faps.2003.1220288 [42] S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 70–81, jan 2005. [Online]. Available: https://doi.org/10.1109%2Ftap.2004.840520 [43] M. F. Samani, A. Borji, and R. Safian, “Relation between reflection phase and surface-wave bandgap in artificial magnetic conductors,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, pp. 1901–1908, aug 2011. [Online]. Available: https://doi.org/10.1109%2Ftmtt.2011.2157353 [44] V. Gjokaj and P. Chahal, “A design study of 3d printed reduced height waveguide structures,” in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, may 2018. [Online]. Available: https://doi.org/10.1109%2Fectc. 2018.00027 [45] M. Ying, R. Kuse, T. Hori, M. Fujimoto, T. Seki, K. Sato, and I. Oshima, “Unit cell structure of amc with multi-layer patch type fss for miniaturization,” in 2013 ISAP Proceedings, vol. 2, 01 2013, pp. 957–960. [46] C. Balanis, Advanced Engineering Electromagnetics, 2nd Edition. Wiley, 2012. [Online]. Available: https://books.google.com.tw/books?id=2eMbAAAAQBAJ [47] E. Rajo-Iglesias and P.-S. Kildal, “Groove gap waveguide: A rectangular waveguide between contactless metal plates enabled by parallel-plate cut-off,” in Proceedings of the Fourth European Conference on Antennas and Propagation, 2010, pp. 1–4. [48] J. Meixner, “The behavior of electromagnetic fields at edges,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 4, pp. 442–446, jul 1972. [Online]. Available: https://doi.org/10.1109%2Ftap.1972.1140243 [49] Z. Sipus and M. Bosiljevac, “Modeling of glide-symmetric dielectric structures,” Symmetry, vol. 11, no. 6, p. 805, jun 2019. [Online]. Available: https: //doi.org/10.3390%2Fsym11060805 [50] X. He, M. Hou, J.-R. Zhang, and Y.-L. Chi, “Development of four kinds of waveguide power divider for s band,” 2016. [51] J. Sorocki, I. Piekarz, A. Samulak, N. Delmonte, L. Silvestri, S. Marconi, G. Alaimo, F. Auricchio, and M. Bozzi, “Additively fabricated air-filled waveguide integrated with printed circuit board using a through-patch transition,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 11, pp. 1207–1210, nov 2021. [Online]. Available: https://doi.org/10.1109%2Flmwc.2021.3112567 [52] R. Elliot, ANTENNA THEORY AND DESIGN, REVISED ED. Wiley India Pvt. Limited, 2006. [Online]. Available: https://books.google.com.tw/books?id=-yBRtAY_EvUC [53] N. A. Aboserwal, C. A. Balanis, and C. R. Birtcher, “Impact of finite ground plane edge diffractions on radiation patterns of aperture antennas,” Progress in Electromagnetics Research B, vol. 55, pp. 1–21, 2013. [54] P.-S. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 38, no. 10, pp. 1537–1544, 1990. [Online]. Available: https://doi.org/10.1109%2F8.59765 [55] G. Chattopadhyay, M. Alonso-delPino, N. Chahat, D. González-Ovejero, C. Lee, and T. Reck, “Terahertz antennas and feeds,” in Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Springer International Publishing, sep 2017, pp.335–386. [Online]. Available: https://doi.org/10.1007%2F978-3-319-62773-1_10 [56] E. Liew, M. C. F. Malaysia, S. A. Malaysia, T. A. Okubo, T. Sudo, T. Hosoi, H. Tsuyoshi, and F. Kuwako, “Signal transmission loss due to copper surface roughness in high-frequency region,” in Proceedings of the IPC APEX EXPO 2014 Technical Conference, Las Vegas, NV, USA, 2014, pp. 25–27. [57] Z. Chen and W. Tian, “Effect of surface roughness on the electrical performances of CPW transmission lines used in future ultra-high frequency applications,” Micromachines, vol. 14, no. 1, p. 104, dec 2022. [Online]. Available: https://doi.org/10.3390%2Fmi14010104 [58] S. Groiss, I. Bardi, O. Biro, K. Preis, and K. R. Richter, “Parameters of lossy cavity resonators calculated by the finite element method,” IEEE Transactions on Magnetics, vol. 32, no. 3, pp. 894–897, 1996. [59] “Huray surface roughness model,” http:// www.mweda.com/ designer/ ansoft-designer/planarEMsim/HuraySurfaceRoughnessModel.htm, accessed: 2023-07-12. [60] C.-D. Chen, C.-K. Tzuang, and S. Peng, “Full-wave analysis of a lossy rectangular waveguide containing rough inner surfaces,” IEEE Microwave and Guided Wave Letters, vol. 2, no. 5, pp. 180–181, may 1992. [Online]. Available: https://doi.org/10.1109%2F75.134347 [61] B. Huang, J. Chen, and W. Jiang, “Effects of surface roughness on TE modes in rectangular waveguide,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 30, no. 7, pp. 717–726, apr 2009. [Online]. Available: https: //doi.org/10.1007%2Fs10762-009-9488-4 [62] “Surface roughness effect,” https:// www.oldfriend.url.tw/ HFSS/ ansys_en_Roughness.html, accessed: 2023-07-12. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90475 | - |
| dc.description.abstract | 隨著第六代(6G)通訊系統、物聯網(IoT)、智慧家居/城市等的到來,對具有更寬頻寬和更快數據速率的短距離無線系統的需求比以往任何時候都更高。與傳統微波系統相比,毫米波(mmW)和次太赫茲(sub-THz)通訊系統因為頻率增加而具有提供更高頻寬的潛力,能夠滿足用戶的需求。在這些頻率上,需要使用封裝天線技術(AiP)來縮裝射頻系統並減少不必要的功率損耗。AiP允許在多層PCB結構中整合波束成形網絡、高增益相控陣列天線和射頻單元。在AiP封裝中,決定整體系統性能的一個關鍵組件是傳輸線。基於介電質的傳輸線在高頻時具有較大的損耗。將空氣波導引入多層PCB結構並將其用作傳輸線是一個機會,因為空氣填充波導(AFW)的尺寸可以減小到幾個毫米。在這樣的結構中,其中一個重要挑戰是無縫隙連接頂部和底部金屬層以形成波導的側壁。作為側壁的通孔是一個常見的做法,但高頻時所需的通孔尺寸和間距可能會超出製造能力。此外,所需的通孔數量將非常龐大,增加了設備的整體成本。基於電磁能隙(EBG)結構的解決方案使用通孔作為側壁,並利用電磁能隙的特性減少通孔與基板之間的泄漏。這些電磁能隙元件在其單元中包含通孔,其尺寸相當於半個波長。因此,在本論文中提出了一種基於縮小尺寸且無通孔的平面人造磁導體(AMC)的解決方案,用於在多層基板中創建空氣波導(AFW)。模擬和實驗結果顯示了所提出結構在低成本FR4基板上的優越性能。基於所提出的技術,探討了毫米波和次太赫茲頻率下多層AFW結構的各種拓撲。另外,研究與3D列印的整合可能性,比較所提出基於AFW的平面縫隙(slot)陣列天線有無3D列印製成的號角天線兩種情況。 | zh_TW |
| dc.description.abstract | With the arrival of the sixth-generation (6G) communications system, Internet of Things (IoT), smart home/city, etc., the demand for short-range wireless systems with higher bandwidth and faster data rates is higher than ever. Compared to traditional microwave systems, millimeter wave (mmW) and sub-THz communications systems have the potential to meet user demands as they inherently provide higher bandwidths due to increased frequency. Antenna-in-package (AiP) solutions are necessary at these frequencies to compact the RF systems and reduce unwanted power loss. AiP allows seamless integration of a beamforming network and a high-gain phased array of antennas with RF units in a multilayer PCB structure. One of the critical components determining the overall system’s performance in an AiP package is the transmission line. The dielectric-based transmission lines are lossy at high frequencies. Hence, it presents an opportunity to incorporate air waveguides into multilayer PCB structures and use them as transmission lines as the dimensions of air-filled waveguides (AFW) reduce to a few millimeters. One of the significant challenges in such structures is to seamlessly connect the top and bottom metal layers to form the sidewalls of the waveguide. Vias as sidewalls are an obvious choice. However, the required dimensions and spacings between vias at higher frequencies may reduce beyond the manufacturing capability. Also, the number of vias required will be huge and increase the overall cost of the device. The EBG-based solutions use vias as sidewalls and reduce leakage through the junction of the substrates using the EBG properties. These EBG elements contain vias in their unit cell, and their dimensions are comparable to half of the wavelength. Hence, a miniaturized vial-less planar artificial magnetic conductor (AMC) based solution to create AFW in a multi-layer substrate is presented in this thesis. Simulations and experimental results show the proposed structure's superior performance with low-cost FR4 substrates. Various topologies of multilayer AFW structures at mmW and sub-THz frequency are discussed based on the proposed technology. The possibility of integration with 3D printing is investigated. Planar slot array antenna using the proposed AFW with and without a 3D-printed horn cap is also studied. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:15:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:15:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Denotation xviii Chapter 1 Introduction 1 Chapter 2 Electromagnetic Transmission Lines 4 2.1 Theory of Guided Wave Propagation . . . . . . . . . . . . . . . . . . 5 2.1.1 General Solutions for Guided Modes . . . . . . . . . . . . . . . . . 6 2.2 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Metallic Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1.1 Parallel-plate Waveguide . . . . . . . . . . . . . . . . 9 2.2.1.2 Rectangular Waveguide . . . . . . . . . . . . . . . . . 10 2.2.2 Planar Transmission Lines . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Waveguides in Multi-Layer Structures . . . . . . . . . . . . . . . . 14 2.2.3.1 AFW in Metal-only Covers . . . . . . . . . . . . . . . 15 2.2.3.2 AFW in PCB Substrates . . . . . . . . . . . . . . . . . 16 2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 3 Via-less AMC Air-filled Waveguide Architecture 19 3.1 AFW in Traditional Fabrication Process . . . . . . . . . . . . . . . . 20 3.1.1 Leakage Issue and Analysis . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 Parallel-plate Mode Leakage Suppression . . . . . . . . . . . . . . 25 3.1.3 Proposed Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 The AMC Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 Bandgap and Phase Reflection Bandwidth . . . . . . . . . . . . . . 31 3.3 Via-less AFW Using Square Patch AMC . . . . . . . . . . . . . . . 34 3.3.1 Square Patch UC . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 VL-AFW Construction . . . . . . . . .. . . . . . . . . . . . . . 36 3.4 Generalized Vialess AMC AFW . . . . . . . . . . . . . . . . . . . . 38 3.4.1 Miniaturized Circular Patch UC . . . . . . . . . . . . . . . . . 39 3.4.2 VL-AFW Construction . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.3 E-Field Analysis . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.4 A Tuning Structure for general AMC structures . . . . . . . . . . 45 3.4.4.1 Lateral Input Impedance Analysis for Evaluation of Tuning Structure . . . . . . . . . . . 47 3.4.4.2 Effect of Tuning Structure on Reflection Parameter and E-field . . . . . . . . . . . . . 49 3.4.4.3 Input Impedance Analysis for Square Patch Structure . 51 3.4.5 VL-AFW with Tuning Structure . . . . . . . . . . . . . . . . . . . 53 3.4.5.1 Effect of Thickness of Glue layer . . . . . . . . . . . . 54 3.4.5.2 Effect of number of AMC Columns . . . . . . . . . . . 54 3.4.5.3 Comparison with State-of-the-art Waveguide-based Transmission Lines . . . . . . . . . . . 55 Chapter 4 VL-AFW Basic Network Elements, Topology and Antenna Structures 56 4.1 VL-AFW Basic Elements . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.1 WR-12 RWG to VL-AFW Transition Design . . . . . . . . . . . . 57 4.1.1.1 Narrowband Transition . . . . . . . . . . . . . . . . . 58 4.1.1.2 Wideband Transition . . . . . . . . . . . . . . . . . . . 59 4.1.2 90° Bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 62 4.3 AMC AFW Topology . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.1 Double Layer AMC VL-AFW . . . . . . . . . . . . . . . . . . . . 67 4.3.1.1 WR-12 RWG to VL-AFW Transition . . . . . . . . . . 68 4.3.1.2 Power Divider in VL-AFW . . . . . . . . . . . . . . . 69 4.4 Integration of 3D Printing Technology with VL-AFW . . . . . . . . 72 4.5 VL-AFW Antenna Structures . . . . . . . . . . . . . . . . . . . . . 75 Chapter 5 VL-AFW Concept Extension to 110 GHz 79 5.1 AFW Construction . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.1 Effect of Surface Roughness . . . . . . . . . . . . . . . . . . 83 5.2 Comparison with Mushroom EBG Structure . . . . . . . . . . . . . . 87 5.3 Basic Network Elements and Antenna . . . . . . . . . . . . . . . . 91 5.3.1 Isolation Between Parallel VL-AFW . . . . .. . . . . . . . . . . 91 5.3.2 Vertical Transition . . . . . . . . . . . . . . . . . . . . . . 91 5.3.3 Vertical Power Divider . . . . . . . . . . . . . . . . . . . . . 91 5.4 VL-AFW Slot Array Antenna . . . . . . . . . . . . . . . . . . . . . 92 Chapter 6 Conclusion and Future Prospects 96 References 99 | - |
| dc.language.iso | en | - |
| dc.subject | 第六代(6G) | zh_TW |
| dc.subject | 空氣填充波導(AFW) | zh_TW |
| dc.subject | 封裝內天線(AiP) | zh_TW |
| dc.subject | 電鍍 | zh_TW |
| dc.subject | 人造磁導體(AMC) | zh_TW |
| dc.subject | antenna-in-package (AiP) | en |
| dc.subject | air-filled waveguide (AFW) | en |
| dc.subject | electroplating | en |
| dc.subject | sixth-generation (6G) | en |
| dc.subject | Artificial magnetic conductor (AMC) | en |
| dc.title | 以低成本多層印刷電路基板中之新型無通孔空氣波導於毫米波和次太赫茲頻率下實現低電磁傳播損耗 | zh_TW |
| dc.title | Novel Via-less Air-Filled Waveguide Implementation in Low-Cost Multilayer PCB Substrates for Low Electromagnetic Propagation Loss at Millimeter-Wave and Sub-THz Frequencies | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 吳瑞北;鄭宇翔;林丁丙;陳富強;陳念偉 | zh_TW |
| dc.contributor.oralexamcommittee | Ruey-Beei Wu;Yu-Hsiang Cheng;Ding-Bing Lin;Fu-Chiarng Chen ;Nan-Wei Chen | en |
| dc.subject.keyword | 第六代(6G),封裝內天線(AiP),空氣填充波導(AFW),電鍍,人造磁導體(AMC), | zh_TW |
| dc.subject.keyword | sixth-generation (6G),antenna-in-package (AiP),air-filled waveguide (AFW),electroplating,Artificial magnetic conductor (AMC), | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202303273 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2028-08-07 | - |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 23.17 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
