請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90473完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊姍樺 | zh_TW |
| dc.contributor.advisor | Shan-Hua Yang | en |
| dc.contributor.author | 林軒彤 | zh_TW |
| dc.contributor.author | Hsuan-Tung Lin | en |
| dc.date.accessioned | 2023-10-03T16:14:32Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | 沈如峰 (2021)。龜山島磺煙噴發 24年最大量連宜蘭都可見。中央通訊社。2023年6月2日,取自:https://www.cna.com.tw/news/firstnews/202111210115.aspx
Adrianov, A. (2004). Current problems in marine biodiversity studies. Russian Journal of Marine Biology, 30, S1-S16. Ahyong, S., Boyko, C. B., Bailly, N., Bernot, J., Bieler, R., Brandão, S. N., . . . Zullini, A. (2023). World Register of Marine Species (WoRMS). Retrieved 2023-06-02, from WoRMS Editorial Board https://www.marinespecies.org Alfaro-Lucas, J. M., Pradillon, F., Zeppilli, D., Michel, L. N., Martinez-Arbizu, P., Tanaka, H., . . . Sarrazin, J. (2020). High environmental stress and productivity increase functional diversity along a deep-sea hydrothermal vent gradient. Ecology, 101(11), e03144. Alongi, D. M. (1986). Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia. Marine and Freshwater Research, 37(5), 609-619. Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., . . . Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology, 22(23), 2189-2202. Armenteros, M., & Ruiz-Abierno, A. (2015). Body size distribution of free-living marine nematodes from a Caribbean coral reef. Nematology, 17(10), 1153-1164. Armenteros, M., Ruiz-Abierno, A., Fernández-Garcés, R., Pérez-García, J. A., Díaz-Asencio, L., Vincx, M., & Decraemer, W. (2009). Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuarine, Coastal and Shelf Science, 85(2), 179-189. Bain, O., Baldwin, J. G., Beveridge, I., Bezerra, T. C., Braeckman, U., Coomans, A., . . . Fonseca, G. (2013). Nematoda (Vol. 2). Berlin, Germany: Walter De Gruyter. Baldrighi, E., Zeppilli, D., Appolloni, L., Donnarumma, L., Chianese, E., Russo, G. F., & Sandulli, R. (2020). Meiofaunal communities and nematode diversity characterizing the Secca delle Fumose shallow vent area (Gulf of Naples, Italy). PeerJ, 8, e9058. Bellec, L., Bonavita, M.-A. C., Hourdez, S., Jebbar, M., Tasiemski, A., Durand, L., . . . Zeppilli, D. (2019). Chemosynthetic ectosymbionts associated with a shallow-water marine nematode. Scientific Reports, 9(1), 7019. Bellec, L., Cambon-Bonavita, M.-A., Durand, L., Aube, J., Gayet, N., Sandulli, R., . . . Zeppilli, D. (2020). Microbial communities of the shallow-water hydrothermal vent near Naples, Italy, and chemosynthetic symbionts associated with a free-living marine nematode. Frontiers in Microbiology, 11. Bernard, E., Handoo, Z., Powers, T., Donald, P., & Heinz, R. (2010). Vittatidera zeaphila (Nematoda: Heteroderidae), a new genus and species of cyst nematode parasitic on corn (Zea mays). Journal of nematology, 42, 139-150. Bik, H. M., Lambshead, P. J. D., Thomas, W. K., & Lunt, D. H. (2010). Moving towards a complete molecular framework of the Nematoda: a focus on the Enoplida and early-branching clades. BMC Evolutionary Biology, 10(1), 353. Blott, S. J., & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237-1248. Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19. Brüchner-Hüttemann, H., & Traunspurger, W. (2020). Seasonal distribution of abundance, biomass and secondary production of free-living nematodes and their community composition in different stream micro-habitats. Nematology, 22(4), 401-422. Brannock, P. M., Sharma, J., Bik, H. M., Thomas, W. K., & Halanych, K. M. (2017). Spatial and temporal variation of intertidal nematodes in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Marine Environmental Research, 130, 200-212. Cai, L., Fu, S., Zhou, X., Tseng, L.-C., & Hwang, J.-S. (2020). Benthic meiofauna with emphasis on nematode assemblage response to environmental variation in the intertidal zone of the Danshuei River estuary, northwest Taiwan. Ecological Research, 35(5), 857-870. Chan, B. K. K., Wang, T.-W., Chen, P.-C., Lin, C.-W., Chan, T.-Y., & Tsang, L. M. (2016). Community structure of macrobiota and environmental parameters in shallow water hydrothermal vents off Kueishan Island, Taiwan. PLOS ONE, 11(2), e0148675. Chang, N.-N., Lin, L.-H., Tu, T.-H., Jeng, M.-S., Chikaraishi, Y., & Wang, P.-L. (2018). Trophic structure and energy flow in a shallow-water hydrothermal vent: Insights from a stable isotope approach. PLOS ONE, 13(10), e0204753. Chen, C.-T. A., Zeng, Z., Kuo, F.-W., Yang, T. F., Wang, B.-J., & Tu, Y.-Y. (2005). Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology, 224(1), 69-81. Chen, C., Chan, T.-Y., & Chan, B. K. K. (2018). Molluscan diversity in shallow water hydrothermal vents off Kueishan Island, Taiwan. Marine Biodiversity, 48(1), 709-714. Chen, H.-Y., Cheng, Y.-S., Grabner, D. S., Chang, S.-H., & Shih, H.-H. (2014). Effect of different temperatures on the expression of the newly characterized heat shock protein 90 (Hsp90) in L3 of Anisakis spp. isolated from Scomber australasicus. Veterinary Parasitology, 205(3), 540-550. Chen, H.-Y., Cheng, Y.-S., & Shih, H.-H. (2015). Expression patterns and structural modelling of Hsp70 and Hsp90 in a fish-borne zoonotic nematode Anisakis pegreffii. Veterinary Parasitology, 212(3), 281-291. Chen, H.-Y., & Shih, H.-H. (2015). Occurrence and prevalence of fish-borne Anisakis larvae in the spotted mackerel Scomber australasicus from Taiwanese waters. Acta Tropica, 145, 61-67. Chen, X.-G., Lyu, S.-S., Garbe-Schönberg, D., Lebrato, M., Li, X., Zhang, H.-Y., . . . Ye, Y. (2018). Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan. Journal of Marine Systems, 180, 211-219. Chen, Y. J., Wu, J. Y., Chen, C. T. A., & Liu, L. L. (2015). Effects of low-pH stress on shell traits of the dove snail, Anachis misera, inhabiting shallow-vent environments off Kueishan Islet, Taiwan. Biogeosciences, 12(9), 2631-2639. Chiu, C.-L., Sheng-Rong, S., Yu-Chung, H., & Chi-Xuan, C. (2010). Volcanic characteristics of Kueishantao in northeast Taiwan and their implications. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 21(3), 5. Chou, Y.-Y., Wang, C.-S., Chen, H.-G., Chen, H.-Y., Chen, S.-N., & Shih, H.-H. (2011). Parasitism between Anisakis simplex (Nematoda: Anisakidae) third-stage larvae and the spotted mackerel Scomber australasicus with regard to the application of stock identification. Veterinary Parasitology, 177(3), 324-331. Claeke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117-143. Copley, J., Flint, H., Ferrero, T., & Van Dover, C. (2007). Diversity of meiofauna and free-living nematodes in hydrothermal vent mussel beds on the northern and southern East Pacific Rise. Journal of the Marine Biological Association of the United Kingdom, 87(5), 1141-1152. Dahms, H.-U., & Hwang, J.-S. (2013). Mortality in the ocean-with lessons from hydrothermal vents off Kueishan Tao, Ne-Taiwan. Journal of Marine Science and Technology, 21(6), 12. de Goeij, J. M., van Oevelen, D., Vermeij, M. J., Osinga, R., Middelburg, J. J., de Goeij, A. F., & Admiraal, W. (2013). Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science, 342(6154), 108-110. De Ley, P., & Blaxter, M. L. (2004). A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. Paper presented at the Proceedings of the Fourth International Congress of Nematology, 8-13 June 2002, Tenerife, Spain. Du, Y., Gao, S., Warwick, R. M., & Hua, E. (2014). Ecological functioning of free-living marine nematodes in coastal wetlands: an overview. Chinese Science Bulletin, 59(34), 4692-4704. Ferris, H., Griffiths, B. S., Porazinska, D. L., Powers, T. O., Wang, K.-H., & Tenuta, M. (2012). Reflections on plant and soil nematode ecology: past, present and future. Journal of nematology, 44(2), 115. Floyd, R., Abebe, E., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular ecology, 11(4), 839-850. Fonseca, G., Maria, T. F., Kandratavicius, N., Venekey, V., Gheller, P. F., & Gallucci, F. (2014). Testing for nematode–granulometry relationships. Marine Biodiversity, 44(3), 435-443. Frank, T., Bent, V., & Olav, G. (2000). Sulphide tolerance of the marine nematode Oncholaimus campylocercoides--a result of internal sulphur formation? Marine Ecology Progress Series, 193, 251-259. Fu, S. J., Cai, L. Z., Yang, J., Zhou, X. P., Peng, X., & Cao, J. (2012). Spatial and seasonal variations of subtidal free-living nematode assemblages in the northern Beibu Gulf, South China Sea. Journal of the Marine Biological Association of the United Kingdom, 92(2), 255-264. Gollner, S., Miljutina, M., & Bright, M. (2013). Nematode succession at deep-sea hydrothermal vents after a recent volcanic eruption with the description of two dominant species. Organisms Diversity & Evolution, 13(3), 349-371. Gollner, S., Riemer, B., Martínez Arbizu, P., Le Bris, N., & Bright, M. (2010). Diversity of meiofauna from the 9°50'N East Pacific Rise across a gradient of hydrothermal fluid emissions. PLOS ONE, 5(8), e12321. Grassi, E., Montefalcone, M., Cesaroni, L., Guidi, L., Balsamo, M., & Semprucci, F. (2022). Taxonomic and functional nematode diversity in Maldivian coral degradation zones: patterns across reef typologies and depths. PeerJ, 10, e13644. Gyedu-Ababio, T. K., & Baird, D. (2006). Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicology and Environmental Safety, 63(3), 443-450. Hatcher, B. G. (1988). Coral reef primary productivity: a beggar's banquet. Trends in Ecology & Evolution, 3(5), 106-111. Heip, C., Vincx, M., & Vranken, G. (1985). The ecology of marine nematodes. Oceanography and Marine Biology: an annual review. Hentschel, U., Berger, E. C., Bright, M., Felbeck, H., & Ott, J. A. (1999). Metabolism of nitrogen and sulfur in ectosymbiotic bacteria of marine nematodes (Nematoda, Stilbonematinae). Marine Ecology Progress Series, 183, 149-158. Hong, J.-H., & Lee, W. (2014). Two new species of free-living marine nematodes (Nematoda: Oncholaimida: Enchelidiidae) from Maemul Island, Korea. Zootaxa, 3785(3), 419-437. Hong, J.-H., Semprucci, F., Jeong, R., Kim, K., Lee, S., Jeon, D., . . . Lee, W. (2020). Meiobenthic nematodes in the assessment of the relative impact of human activities on coastal marine ecosystem. Environmental Monitoring and Assessment, 192(2), 81. Hourston, M., Potter, I. C., Warwick, R. M., Valesini, F. J., & Clarke, K. R. (2009). Spatial and seasonal variations in the ecological characteristics of the free-living nematode assemblages in a large microtidal estuary. Estuarine, Coastal and Shelf Science, 82(2), 309-322. Huang, Y., & Zhang, Z. (2004). A new genus and three new species of free-living marine nematodes (Nematoda: Enoplida: Enchelidiidae) from the Yellow Sea, China. CBM-Cahiers de Biologie Marine., 45(4), 343-354. Hugot, J.-P., Baujard, P., & Morand, S. (2001). Biodiversity in helminths and nematodes as a field of study: an overview. Nematology, 3(3), 199-208. Kamenev, G., Fadeev, V., Selin, N., Tarasov, V., & Malakhov, V. (1993). Composition and distribution of macro‐and meiobenthos around sublittoral hydrothermal vents in the Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research, 27(4), 407-418. Kassambara, A. (2020). Pipe-friendly framework for basic statistical tests [R package rstatix version 0.6.0]. Lee, Y.-C., Lee, H.-H., Ke, H.-M., Liu, Y.-C., Wang, M.-C., Tseng, Y.-C., . . . Tsai, I. J. (2023). Single worm long read sequencing reveals genome diversity in free-living nematodes. bioRxiv, 2023.2004.2017.537128. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H. (2014). UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph, 20(12), 1983-1992. Li, G., Han, X., Yue, S., Wen, G., Rongmin, Y., & Kusky, T. (2006). Monthly variations of water masses in the East China Seas. Continental Shelf Research, 26(16), 1954-1970. Liao, J.-X., & Dovgal, I. (2015). A new Thecacineta species (Ciliophora, Suctorea) on Desmodora pontica (Nematoda, Des-modorida) from a seagrass bed in Taiwan. Protistology, 9, 75-78. Liao, J.-X., Wei, C.-L., & Yasuhara, M. (2020). Species and functional diversity of deep-sea nematodes in a high energy submarine canyon. Frontiers in Marine Science, 7. Liao, J.-X., Yeh, H.-M., & Mok, H.-K. (2015a). Do the abundance, diversity, and community structure of sediment meiofauna differ among seagrass species? Journal of the Marine Biological Association of the United Kingdom, -1, 1-11. Liao, J.-X., Yeh, H.-M., & Mok, H.-K. (2015b). Meiofaunal communities in a tropical seagrass bed and adjacent unvegetated sediments with note on sufficient sample size for determining local diversity indices. Zoological Studies, 54(1), 14. Lichtschlag, A., Braeckman, U., Guilini, K., Ahmerkamp, S., James, R. H., & de Beer, D. (2022). Impact of shallow-water hydrothermal seepage on benthic biogeochemical cycling, nutrient availability, and meiobenthic communities in a tropical coral reef. Limnology and Oceanography, 67(3), 567-584. Liu, H., Zhang, Z., Fan, S., Hua, E., & Deng, K. (2008). Seasonal variability in free-living marine nematode community structure in a sandy beach of the Taiping Bay of Qingdao, China. Acta Oceanologica Sinica, 27, 102-115. Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81-97. Luo, H.-Y., Chen, H.-Y., Chen, H.-G., & Shih, H.-H. (2016). Scavenging hagfish as a transport host of Anisakid nematodes. Veterinary Parasitology, 218, 15-21. Moreno, M., Ferrero, T. J., Gallizia, I., Vezzulli, L., Albertelli, G., & Fabiano, M. (2008). An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuarine, Coastal and Shelf Science, 77(4), 565-576. Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11(2), 328-336. Nanajkar, M. R., & Ingole, B. S. (2007). Nematode species diversity as indicator of stressed benthic environment along the central west coast of India. In P. V. Desai & R. Roy (Eds.), Nematode species diversity as indicator of stressed benthic environment along the central west coast of India (pp. 42-52). India: Goa University. Ng, W.-L., Chen, C.-A., Mustafa, S., Soo, C.-L., Liao, Y.-C., & Shih, T.-W. (2022). Free-living marine nematodes community structure in the conservation area (Chaojing Park) and its adjacent area of Keelung, Taiwan. PLOS ONE, 17(5), Nicholas, W. L. (2001). Seasonal variations in nematode assemblages on an Australian temperate ocean beach; the effect of heavy seas and unusually high tides. Hydrobiologia, 464(1), 17-26. Odum, H. T., & Odum, E. P. (1955). Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological monographs, 25(3), 291-320. Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H., Oksanen, M. J., & Suggests, M. (2007). The vegan package. Community ecology package, 10(631-637), 719. Pérez-García, J. A., Marzo-Pérez, D., & Armenteros, M. (2019). Spatial scale influences diversity patterns of free-living nematode assemblages in coral degradation zones from the Caribbean Sea. Marine Biodiversity, 49(4), 1831-1842. Platt, H. M., & Warwick, R. M. (1980). The significance of free-living nematodes to the littoral ecosystem. In J. H. Price, D. E. G. Irvine, & W. F. Farnham (Eds.), The shore environment. Vol. 2. Ecosystems. Cambridge, UK: Academic Press. Raes, M., De Troch, M., Ndaro, S. G. M., Muthumbi, A., Guilini, K., & Vanreusel, A. (2007). The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar. Coral Reefs, 26(1), 113-126. Raes, M., Decraemer, W., & Vanreusel, A. (2008). Walking with worms: coral-associated epifaunal nematodes. Journal of Biogeography, 35(12), 2207-2222. Raes, M., & Vanreusel, A. (2006). Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep Sea Research Part I: Oceanographic Research Papers, 53(12), 1880-1894. Ridall, A., & Ingels, J. (2021). Suitability of free-living marine nematodes as bioindicators: Status and future considerations. Frontiers in Marine Science, 8, 685327. Ruiz-Abierno, A., & Armenteros, M. (2017). Coral reef habitats strongly influence the diversity of macro- and meiobenthos in the Caribbean. Marine Biodiversity, 47(1), 101-111. Schmidt-Rhaesa, A. (2014). Gastrotricha, cycloneuralia and gnathifera. Volume 2, Nematoda (A. Schmidt-Rhaesa Ed.). Berlin: De Gruyter. Schratzberger, M., & Ingels, J. (2018). Meiofauna matters: The roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology, 502, 12-25. Semprucci, F., Colantoni, P., Baldelli, G., Rocchi, M., & Balsamo, M. (2010). The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Marine Ecology, 31(4), 592-607. Semprucci, F., Colantoni, P., Baldelli, G., Sbrocca, C., Rocchi, M., & Balsamo, M. (2013). Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Marine Biodiversity, 43(3), 189-198. Semprucci, F., Colantoni, P., Sbrocca, C., Baldelli, G., Rocchi, M., & Balsamo, M. (2011). Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). Journal of Marine Systems, 87(3), 208-215. Shiau, Y.-J., & Chiu, C.-Y. (2017). Changes in soil biochemical properties in a cedar plantation invaded by Moso bamboo. Forests, 8(7), 222. Shih, H.-H., Ku, C.-C., & Wang, C.-S. (2010). Anisakis simplex (Nematoda: Anisakidae) third-stage larval infections of marine cage cultured cobia, Rachycentron canadum L., in Taiwan. Veterinary Parasitology, 171(3), 277-285. Silveira, C. B., Cavalcanti, G. S., Walter, J. M., Silva-Lima, A. W., Dinsdale, E. A., Bourne, D. G., . . . Thompson, F. L. (2017). Microbial processes driving coral reef organic carbon flow. FEMS Microbiology Reviews, 41(4), 575-595. Tarasov, V. G., Gebruk, A. V., Mironov, A. N., & Moskalev, L. I. (2005). Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chemical Geology, 224(1), 5-39. Tarasov, V. G., Gebruk, A. V., Shulkin, V. M., Kamenev, G. M., Fadeev, V. I., Kosmynin, V. N., . . . Obzhirov, A. I. (1999). Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea). Continental Shelf Research, 19(1), 79-116. Tchesunov, A. V. (2015). Free-living nematode species (Nematoda) dwelling in hydrothermal sites of the North Mid-Atlantic Ridge. Helgoland Marine Research, 69(4), 343-384. Thiermann, F., Akoumianaki, I., Hughes, J. A., & Giere, O. (1997). Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Marine Biology, 128(1), 149-159. Thiermann, F., Windoffer, R., & Giere, O. (1994). Selected meiofauna around shallow water hydrothermal vents off Milos (Greece): ecological and ultrastructural aspects. Vie et Milieu-Life and Environment, 215-226. Urbancik, W., Bauer-Nebelsick, M., & Ott, J. A. (1996). The ultrastructure of the cuticle of Nematoda. Zoomorphology, 116(2), 51-64. van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., . . . Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194-198. Villanueva, R. A. M., & Chen, Z. J. (2019). ggplot2: elegant graphics for data analysis. In: Taylor & Francis. Vrain, T. C., Wakarchuk, D., Lévesque, A. C., & Hamilton, R. (1992). Intraspecific rDNA Restriction Fragment Length Polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology, 15. Wang, T.-W., Lau, D. C. P., Chan, T.-Y., & Chan, B. K. K. (2022). Autochthony and isotopic niches of benthic fauna at shallow-water hydrothermal vents. Scientific Reports, 12(1), 6248. Wieser, W. (1953). Die beziehung zwischen mundhohlengestalt, ernahrungsweise und vorkommen be1 fre lebenden marmen nernatoden. Arkiv for zoologi, 4, 439-484. Yang, T. F., Lan, T. F., Lee, H.-F., Fu, C.-C., Chuang, P.-C., Lo, C.-H., . . . Lee, C.-S. (2005). Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal, 39(5), 469-480. Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of nematology, 25(3), 315-331. Zeppilli, D., & Danovaro, R. (2009). Meiofaunal diversity and assemblage structure in a shallow-water hydrothermal vent in the Pacific Ocean. Aquatic Biology, 5(1), 75-84. Zeppilli, D., Leduc, D., Fontanier, C., Fontaneto, D., Fuchs, S., Gooday, A. J., . . . Fernandes, D. (2018). Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity, 48(1), 35-71. Zeppilli, D., Vanreusel, A., Pradillon, F., Fuchs, S., Mandon, P., James, T., & Sarrazin, J. (2015). Rapid colonisation by nematodes on organic and inorganic substrata deployed at the deep-sea Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). Marine Biodiversity, 45(3), 489-504. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90473 | - |
| dc.description.abstract | 海洋線蟲是海底沉積物當中數量最為豐富的小型底棲動物,他們會參與棲地的養分循環與食物網,作為微生物與大型底棲生物間的能量橋梁。因為海洋線蟲對於環境的變動相當敏感,所以可作為評估生態系統的生物指標。龜山島是一座火山島,龜山島的東南方具有多座淺海熱泉,相對地,龜山島的西方則是具有珊瑚礁生態系。從熱泉區到非熱泉區,龜山島大型底棲生物群落變動已有多份研究探討,然而小型底棲動物則未有調查。因此,本研究在環繞龜山島的6個地點進行不同時間點底泥的採集以探討其海洋線蟲群落。採樣地點包括3個熱泉生態系 (近泉、遠泉與CO2泉)、1個珊瑚礁生態系 (龜尾)、2個過渡地點位於熱泉與珊瑚礁之間 (龜北、龜南)。底泥除了用於線蟲的分離外,還會進行粒徑大小的分析與底泥化學組成的分析。結果顯示,珊瑚礁環境的線蟲豐度會隨著時間變化,於春季與夏季豐度會呈現上升的趨勢。近泉與遠泉的線蟲數量無論時間點都非常少,但CO2泉的春季數量大增,並於夏季稍下降。地點不僅影響線蟲在不同時間點的變動情形,還會影響線蟲的群落組成。底泥的物化性質中底泥粒徑與SO42-、Mg2+、Cl-是顯著造成線蟲群落組成差異的重要環境因子。CO2泉以熱泉相關物種及耐受性強的周遭物種為主要組成;龜北獨有物種比例高,以適應粗顆粒的物種為主;龜尾則以適應細顆粒的物種為主。此外,龜尾、龜南到近遠泉則呈現豐度與組成上的連續性變化。 | zh_TW |
| dc.description.abstract | Free-living marine nematodes are the most abundant meiobenthos in marine sediment. They participate in the nutrient cycle and the food web of the habitat, and serve as an energy bridge between macrobenthos and microorganisms. Because free-living marine nematodes are sensitive to environmental variations, they can be served as bioindicators to assess ecosystems. Turtle Island is a volcanic island, the southeastern of the island locates clusters of hydrothermal vents. By contrast, the western has no vent and contains a coral reef ecosystem. Several studies have investigated the composition of macrobenthos around hydrothermal vents of Turtle Island, but there is no survey about meiobenthos. Therefore, we collected sediment samples from 6 sampling sites surrounding Turtle Island each season for a year to investigate the free-living marine nematode communities. The sampling sites included 3 vent sites (Near vent, Far vent, and CO2 vent), 1 coral reef ecosystem (Tail), and 2 buffer sites, between the vent sites and the coral reef (North and South). In addition to the extraction of nematodes, the sediment samples were also analyzed for grain size distribution and chemical ion composition. The results showed that the abundance of nematodes in the coral reef changed over time, with an increasing trend in spring and summer. The number of nematodes in Near vent and Far vent was quite low no matter the time point, but the number of nematodes in CO2 vent increased greatly in spring and decreased slightly in summer. Sampling sites affected not only the temporal variation of the nematode abundance, but also had an impact on the nematode composition. Among the physical and chemical properties of sediment, grain size, SO42-, Mg2+, and Cl- were crucial environmental factors that significantly caused differences in the composition of nematode communities. CO2 vent were mainly composed of vent-related species and surrounding species with strong tolerance. North had own special community, mainly species adapted to very coarse sand. Tail was dominated by species adapted to medium sand. Furthermore, Tail, South, Far vent, and Near vent showed a continuum of changes in the nematode abundance and composition. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:14:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:14:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝辭 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 x 壹、 緒論 1 1.1. 海洋線蟲介紹 1 1.2. 海洋線蟲的功能群分類 2 1.3. 龜山島的環境特徵與生物群落 3 1.4. 淺海熱泉生態系與線蟲群落 4 1.5. 珊瑚礁生態系與線蟲群落 5 1.6. 線蟲群落隨時間之變動 7 1.7. 台灣的海洋線蟲研究 7 1.8. 研究目的 9 貳、 材料與方法 11 2.1. 樣本採集 11 2.2. 線蟲分離 12 2.3. 線蟲之分子鑑定 12 2.3.1. DNA粗萃取 12 2.3.2. 質體建構 13 2.3.3. 轉殖與質體萃取 14 2.3.4. 定序 15 2.4. 線蟲之型態鑑定 15 2.5. 線蟲功能群分類 16 2.6. 底泥性質分析 16 2.6.1. 化學組成分析 16 2.6.2. 粒徑分析 17 2.7. 數據分析 17 參、 結果 20 3.1. 底泥性質分析 20 3.1.1 粒徑分析 20 3.1.2 化學成分分析 21 3.2. 線蟲群落分析 22 3.2.1. 線蟲之分離與鑑定 22 3.2.2. 線蟲豐度於時間下的變動 23 3.2.3. 線蟲群落之α多樣性 23 3.2.4. 線蟲之群落組成 24 3.2.5. 線蟲之功能群組成 26 3.2.6. 環境因子對線蟲群落之影響 26 肆、 討論 28 4.1. 樣本採樣與定量問題 28 4.2. 環境因子對線蟲的影響 29 4.3. 線蟲數量的時間變動 30 4.4. 龜山島周遭海域的線蟲群落組成 30 4.4.1. 熱泉環境 30 4.4.2. 近遠泉 31 4.4.3. CO2泉 32 4.3.4. 龜北 33 4.3.5. 龜尾 34 4.3.6. 龜南 35 4.3.7. 線蟲之功能群分類 35 伍、 結論 37 陸、 圖與表 38 柒、 參考資料 79 捌、 附錄 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 淺海熱泉 | zh_TW |
| dc.subject | 小型底棲動物 | zh_TW |
| dc.subject | 海洋線蟲 | zh_TW |
| dc.subject | 龜山島 | zh_TW |
| dc.subject | 珊瑚礁 | zh_TW |
| dc.subject | shallow-water hydrothermal vent | en |
| dc.subject | meiobenthos | en |
| dc.subject | coral reef | en |
| dc.subject | Turtle Island | en |
| dc.subject | marine nematode | en |
| dc.title | 龜山島周遭海域底泥線蟲之群落 | zh_TW |
| dc.title | The study of nematode communities in the sediment surrounding Turtle Island | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊爵因;蔡怡陞;吳羽婷 | zh_TW |
| dc.contributor.oralexamcommittee | Jiue-in Yang;Isheng Jason Tsai;Yu-Ting Wu | en |
| dc.subject.keyword | 小型底棲動物,海洋線蟲,龜山島,淺海熱泉,珊瑚礁, | zh_TW |
| dc.subject.keyword | meiobenthos,marine nematode,Turtle Island,shallow-water hydrothermal vent,coral reef, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202302759 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2024-08-15 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 5.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
