請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90470完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯佳吟 | zh_TW |
| dc.contributor.advisor | Chia-Ying Ko | en |
| dc.contributor.author | 劉庭伊 | zh_TW |
| dc.contributor.author | Ting-I Liu | en |
| dc.date.accessioned | 2023-10-03T16:13:41Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-18 | - |
| dc.identifier.citation | Akaike, H. (1981). Likelihood of a model and information criteria. Journal of econometrics, 16(1), 3-14.
Bigelow, K. A., Hampton, J., & Miyabe, N. (2002). Application of a habitat‐based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus). Fisheries Oceanography, 11(3), 143-155. Brodziak, J., & Ishimura, G. (2011). Development of Bayesian production models for assessing the North Pacific swordfish population. Fisheries Science, 77, 23-34. Campbell, R. A. (2004). CPUE standardisation and the construction of indices of stock abundance in a spatially varying fishery using general linear models. Fisheries Research, 70(2-3), 209-227. Chen, C.-S., Tzeng, C.-H., & Chiu, T.-S. (2010). Morphological and molecular analyses reveal separations among spatiotemporal populations of anchovy (Engraulis japonicus) in the southern East China Sea. Zoological Studies, 49(2), 270-282. Chiu, T.-S., & Chang, K.-Z. (1992). Preliminary Study on Temporal Variation of Ichthyoplankton Density and Composition in the I-lan Bay, Taiwan. Jornal of the Fisheries Society of Taiwan, 19(3), 155-164. Chiu, T.-S., Young, S.-S., & Chen, C.-S. (1997). Monthly variation of larval anchovy fishery in I-lan Bay, NE Taiwan, with an evaluation for optimal fishing season. Jornal of the Fisheries Society of Taiwan, 24(4), 273-282. Dichmont, C. M., Deng, R. A., Punt, A. E., Brodziak, J., Chang, Y.-J., Cope, J. M., Ianelli, J. N., Legault, C. M., Methot Jr, R. D., & Porch, C. E. (2016). A review of stock assessment packages in the United States. Fisheries Research, 183, 447-460. Dick, E., & MacCall, A. D. (2011). Depletion-based stock reduction analysis: a catch-based method for determining sustainable yields for data-poor fish stocks. Fisheries Research, 110(2), 331-341. Ducharme-Barth, N. D. (2021). What is CPUE standardisation and why is it important for stock assessments? Fisheries newsletter, 166(166), 45-49. Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A. C., Dimarchopoulou, D., Scarcella, G., Quaas, M., & Matz-Lück, N. (2018). Status and rebuilding of European fisheries. Marine Policy, 93, 159-170. Gavaris, S. (1988). An adaptive framework for the estimation of population size. Canadian Atlantic Fisheries Scientific Advisory Committee research document, 88, 12. Glover, T., & Mitchell, K. (2016). An Introduction to Biostatistics (Third edition). Waveland Press. Goodyear, C. P., & Ortiz, M. (2007). GLM CPUE standardizations: interpretation risks for model fits from alternative software packages. Collective Volume of Scientific Papers. ICCAT, 60(5), 1622-1629. Gulland, J. A. (1956). On the fishing effort in English demersal fisheries. HM Stationery Office. Hilborn, R. (2010). Pretty good yield and exploited fishes. Marine Policy, 34(1), 193-196. Hinton, M. G., & Maunder, M. N. (2004). Methods for standardizing CPUE and how to select among them. Collective Volume of Scientific Papers. ICCAT, 56(1), 169-177. Huang, C.-H., Chen, C.-S., & Chiu, T.-S. (2018). Growth of Buccaneer Anchovy (Encrasicholina punctifer) During Juvenile Stage in the Waters off Southwestern Taiwan. Journal of Taiwan Fisheries Research, 26(1), 53-61. Lai, C.-C., Lee, P.-I., & Hsueh, P.-R. (2023). How Taiwan has responded to COVID-19 and how COVID-19 has affected Taiwan, 2020-2022. Journal of Microbiology, Immunology and Infection, 56(3), 443-441. Lee, M.-A., Lee, K.-T., & Shiah, G.-Y. (1994). Seasonal Changes in Commerical Catches of Larval Anchovy in the Southwest Coastal Waters of Taiwan. Jornal of the Fisheries Society of Taiwan, 21(1), 49-56. Liao, C.-P., Huang, H.-W., & Lu, H.-J. (2019). Fishermen's perceptions of coastal fisheries management regulations: Key factors to rebuilding coastal fishery resources in Taiwan. Ocean & Coastal Management, 172, 1-13. Magnusson, A., & Hilborn, R. (2007). What makes fisheries data informative? Fish and Fisheries, 8(4), 337-358. Methot, R. (1990). Synthesis model: an adaptable framework for analysis of diverse stock assessment data. North Pacific Anadromous Fish Commission, 50, 259-277. Methot Jr, R. D., & Wetzel, C. R. (2013). Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142, 86-99. Mohn, R. K. (1980). Bias and error propagation in logistic production models. Canadian Journal of Fisheries and Aquatic Sciences, 37(8), 1276-1283. Nugraha, B., Utomo, S., & Dewi, I. (2021). Management of sustainable fisheries and utilization status of red snapper (Lutjanus spp.) using handline landed in archipelagic fishing port of Brondong. IOP Conference Series: Earth and Environmental Science, 890, 1-7. Pons, M., Cope, J. M., & Kell, L. T. (2020). Comparing performance of catch-based and length-based stock assessment methods in data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 77(6), 1026-1037. Prager, M. H. (2016). User’s Guide for ASPIC Suite, Version 7: a Stock-Production Model Incorporating Covariates and Auxiliary Programs. Portland: Prager Consulting. Punt, A. (1990). Is B 1= K an appropriate assumption when applying an observation error production-model estimator to catch-effort data? South African Journal of Marine Science, 9(1), 249-259. Punt, A. E., A'mar, T., Bond, N. A., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A., Haltuch, M. A., Hollowed, A. B., & Szuwalski, C. (2014). Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES Journal of Marine Science, 71(8), 2208-2220. Restrepo, V. (2000). GLOSSARY of Fishery Terms. ICCAT, 1-23. Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin Fisheries Research Board of Canada, 191, 1-382. Russel, E. S. (1931). Some theoretical considerations on the “overfishing” problem. Journal du Conseil, 6, 3-20. Sauer, W., Melo, Y., & Boletzky, S. v. (2002). Squid and anchovy: Similar subjects, different schools. Bulletin of marine science, 71(2), 771-782. Schaefer, M. B. (1954). Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bulletin of the Inter American Tropical Tuna Commission, 1, 27-56. Schijns, R., & Pauly, D. (2022). Management implications of shifting baselines in fish stock assessments. Fisheries Management and Ecology, 29(2), 183-195. Shertzer, K. W., Prager, M. H., Vaughan, D. S., & Williams, E. H. (2008). Fishery Models. Entry in Encyclopedia of Ecology. Elsevier, Amsterdam. Somerton, D., Ianelli, J., Walsh, S., Smith, S., Godø, O., & Ramm, D. (1999). Incorporating experimentally derived estimates of survey trawl efficiency into the stock assessment process: a discussion. ICES Journal of Marine Science, 56(3), 299-302. Stewart, I. J., & Martell, S. J. (2015). Reconciling stock assessment paradigms to better inform fisheries management. ICES Journal of Marine Science, 72(8), 2187-2196. Thorpe, R. B., Jennings, S., & Dolder, P. J. (2017). Risks and benefits of catching pretty good yield in multispecies mixed fisheries. ICES Journal of Marine Science, 74(8), 2097-2106. Wang, S.-P., Lee, M.-A., & Chen, W.-Y. (2012). Evaluating the Uncertainty of the Population Growth Parameter Estimates of Larval Anchovy in the Southwestern Waters of Taiwan Using Monte Carlo Simulations. Journal of Marine Science and Technology, 20(6), 8. Wang, S.-P., & Nishida, T. (2011). CPUE standardization of swordfish (Xiphias gladius) caught by Taiwanese longline fishery in the Indian Ocean. IOTC Proceeding. Williams, E. H., & Prager, M. H. (2002). Comparison of equilibrium and nonequilibrium estimators for the generalized production model. Canadian Journal of Fisheries and Aquatic Sciences, 59(9), 1533-1552. Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J. B., Lotze, H. K., Micheli, F., & Palumbi, S. R. (2006). Impacts of biodiversity loss on ocean ecosystem services. science, 314(5800), 787-790. Young, S.-S., Chen, C.-C., & Chiu, T.-S. (1992). Resource characteristics of young herring-like fish in the I-Lan Bay area-fishing season, major species and size variation. Jornal of the Fisheries Society of Taiwan, 19(4), 273-281. Yu, H.-T., Lee, Y.-J., Huang, S.-W., & Chiu, T.-S. (2002). Genetic analysis of the populations of Japanese anchovy (Engraulidae: Engraulis japonicus) using microsatellite DNA. Marine Biotechnology, 4, 471-479. Yu, P.-T., & Chiu, T.-S. (1994). Fishery target species of larval anchovy fishery in the western central Taiwan. Jornal of the Fisheries Society of Taiwan, 21(3), 227-239. Zhang, F., Reid, K. B., & Nudds, T. D. (2021). The longer the better? Trade‐offs in fisheries stock assessment in dynamic ecosystems. Fish and Fisheries, 22(4), 789-797. 丘臺生 (1999). 臺灣的仔稚魚. 國立屏東海洋生物博物館籌備處. 屏東. 296pp 田中 榮次 (2013). 新訂水產資源解析學(郭慶老譯). 行政院農業委員會水產試驗所. 基隆. 154pp 李俊明 (2012). 莫拉克風災對台灣西南沿海底層漁業生物群聚之影響. 國立高雄海洋科技大學漁業生產與管理系碩士學位論文. 高雄. 123pp 李明安 (1991). 枋寮沿海鮆科稚魚漁況變動及其現存量評估之研究. 國立臺灣海洋大學漁業研究所博士學位論文. 基隆. 237pp 邱光中 (1991). 漁業管理論. 學英文化事業有限公司. 442pp 洪慶宏, 李明安, 謝豐任, 潘佳怡, 王敏昌, & 李國添 (2006). 台灣西南海域鯷科仔稚魚漁況與水文環境變動關係之研究. Journal of Taiwan Fisheries Research, 14(2), 1-13. 張又元 (2012). 鯷魚豐度及群集組成與ENSO事件之關聯. 國立臺灣大學動物學研究所碩士論文. 台北. 95pp 張可揚, 王凱毅, 廖正信, & 吳繼倫. (2015). 臺灣北部海域劍尖槍鎖管單位努力漁獲量標準化之探討. Journal of Taiwan Fisheries Research, 23(2), 1-14. 陳柏妏 (2018). 大西洋臺灣大型鮪延繩釣漁業觀察員資料分析與鋸峰齒鮫 CPUE 標準化之研究. 國立高雄海洋科技大學漁業生產與管理研究所碩士論文. 高雄. 83pp 許昊仁 編 (2020). 農政與農情331期. 行政院農業委員會. 128pp 黃異 (2018). 漁業法. 新學林出版股份有限公司. 193pp 楊育霖 (2014). 使用非平衡剩餘生產量模式評估北太平洋秋刀魚資源. 國立東華大學自然資源與環境學系碩士班碩士論文. 花蓮. 98pp 楊惠齡, & 林明德 (2017). 生物統計學第十版. 新文京開發出版股份有限公司. 306pp 蔡易霖 (2012). 大西洋黑皮旗魚之豐度指標標準化及資源評估. 國立臺灣大學理學院海洋研究所碩士論文. 台北. 68pp 鄭森雄 (1992). 水產概論(上冊). 國立編譯館. 339pp 戴寶村 (2011). 台灣的海洋歷史文化. 玉山社出版事業股份有限公司. 231pp 薛方琪 (2012). 利用合併生態不確定性之生產量模式評估大西洋大目鮪族群. 國立臺灣大學理學院海洋研究所碩士論文. 台北. 61pp 鍾豐駿 (2008). 應用非平衡生產量模式評估太平洋黑鮪系群. 國立臺灣大學理學院海洋研究所碩士論文. 台北. 70pp 韓玉山 (2019). 國際鰻魚資源現況. 行政院農業委員會水產試驗所特刊, 27, 111-121. 韓玉山 編 (2021). 水產概論. 國立臺灣大學出版中心. 292pp. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90470 | - |
| dc.description.abstract | 合理並永續利用漁業資源是漁業管理及的重點。臺灣位處亞熱帶地區,海洋漁業資源豐富,其中,魩鱙漁業是重要且傳統的沿岸漁業之一,自1977年從日本引進效率較高的捕撈漁具後魩鱙的產量也隨之提高,也同時面臨其他經濟性魚類仔魚遭混獲的挑戰,導致相關管理規範陸續建立。本研究使用2009-2021年魩鱙漁業資料,以共變數合併系群產量模型(a stock production model incorporating covariate,簡稱ASPIC)估算魩鱙漁業的最大可持續生產量(maxima sustainable yield,簡稱MSY),該模型為傳統之Schaefer剩餘生產量模型以非平衡的方式加以落實模式參數的估計,並進一步評估時序資料長短(5年、10年、13年)、不同地區(西北部、西南部、東北部)、不同漁法(大目袖網、流袋網)及不同努力量對最大可持續生產量的變化影響。研究結果指出,在時序資料長度比較上,使用5年份資料所估出的最大可持續生產量數值最高,使用13年份資料則估值最低;在不同地區的結果比較上,東北部地區所估出的最大可持續生產量數值最高,西北部地區所估出的數值最低,可能和東北部及西北部分別是三個地區中捕獲量最高及最低的地區有關;在不同漁法的結果比較上,大目袖網所估出的最大可持續生產量數值在不同努力量下均低於流袋網,但需注意,當只使用單一漁法的資料進行估計時,將會高估魩鱙漁業的最大可持續生產量。整體來看,使用不同時序資料、不同地區、不同使用漁法及不同努力量的資料確實會影響資源量評估的結果。在未來進行魩鱙漁業資源量評估時,應盡可能地使用較長時間年份的資料,並針對不同地區的每個漁法資料逐一分別進行估計,以更能因地制宜制定適合的捕撈規範。在管理面,建議除了將評估出的MSY作為依據,增加利益相關者對該漁業的了解,並保持良好的溝通管道與信任等,都是在管理上不可或缺的重要因素。 | zh_TW |
| dc.description.abstract | An essential goal of fishery management is to harvest the fishery resources rationally with the assistance of stock assessment. Located in the subtropical zone, Taiwan has abundant fisheries resources, and larval fisheries are some among the abundance. However, threat level raised when a high-efficiency fishing gear imported from Japan in 1977, because the gear significantly increased the total catch in Taiwanese area. Moreover, the fisheries faced the challenge of bycatching other economic fish larvae. In this study, I estimated the maxima sustainable yield (MSY) of larval fisheries from 2009-2021 in Taiwanese waters using a stock production model incorporating covariate (ASPIC). Furthermore, we evaluated the effect of different lengths of time-series data (5, 10, and 13 years), different fishing regions (NW, SW, and NE), different fishing types (the two boat trawling nets and the flow bag net), and different fishing efforts on the MSY values. The results showed that in the different time-series, the largest MSY value was estimated by using the 5-year data, and the smallest value by the 13-year data. In the different fishing areas, the largest MSY value was exhibited in the NE area, and the smallest value in the NW area, in which the result may related to the fact that the NE and NW are the regions with the highest and lowest catches, respectively. In the different fishing methods, the MSY value was larger when using the flow bag net’s data than the two boat trawling nets, however, it should be noted that the MSY value may be overestimated by using data from only one type of fishing method. Overall, my findings indicate that MSY estimates are sensitive to various type of input dataset, such as the length of time-series data, the subset of regional data, and the representative data of various fishing types. It is suggested to use data from each fishing types in different fishing regions with longer time-series data for future analysis. Moreover, increasing stakeholders’ understanding of the fishery and maintaining good communication are all important in management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:13:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:13:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
致謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIX 第一章、前言 1 1.1 漁業資源面臨的困難與挑戰 1 1.2 漁業資源 1 1.2.1 漁業資源管理及評估 1 1.2.2 單位努力漁獲量 2 1.2.3 最大可持續生產量 2 1.3 剩餘生產量模型 3 1.4 臺灣的魩鱙漁業 4 1.4.1 發展歷史及管理法規 4 1.4.2 魩鱙漁業在臺灣的分布 5 1.5 研究動機 6 1.6 研究目的 6 第二章、材料與方法 8 2.1 漁獲資料 8 2.2 標準化單位努力漁獲量 8 2.3 使用模型 9 2.3.1 模型簡介 10 2.3.2 模型所需資料 10 2.3.3 模型操作 11 2.3.4 起始值設定及模型最佳結果 11 2.3.5 序列權重值的設定 12 2.4 統計分析 12 2.4.1 估計缺失資料 12 2.5 實驗組別 13 2.5.1 不同資料年份長短 13 2.5.2 不同地區 14 2.5.3 不同使用漁法 15 第三章、結果 17 3.1 漁獲統計資料 17 3.1.1 歷年使用漁法比例 17 3.1.1.1全臺灣使用漁法比例 17 3.1.1.2 各地區使用漁法 17 3.1.2 歷年資料結果及趨勢 20 3.1.2.1 全臺灣資料結果 20 3.1.2.2 各地區資料結果 23 3.2 標準化CPUE 28 3.2.1 不同資料年份長短結果 28 3.2.2 不同地區結果 28 3.2.2.1 西北部地區結果 28 3.2.2.2 西南部地區結果 29 3.2.2.3 東北部地區結果 29 3.2.3 不同漁法結果 29 3.2.3.1 大目袖網結果 29 3.2.3.2 流袋網結果 30 3.3 最大持續生產量 30 3.3.1 不同資料年份長短結果 30 3.3.2 不同地區的結果 34 3.3.2.1 西北部地區 34 3.3.2.2 西南部地區 36 3.3.2.3 東北部地區 37 3.3.3 不同漁法的結果 39 3.3.3.1 大目袖網 39 3.3.3.2 流袋網 40 第四章、討論 42 4.1 魩鱙產量趨勢變動的探討 42 4.2 不同時序資料長短的探討 43 4.3 不同地區的探討 44 4.4 不同漁法的探討 45 4.5 標準化CPUE的探討 46 4.6 模型及資料限制 47 4.7 未來管理建議 48 第五章、結論 50 參考文獻 51 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 非平衡剩餘生產量模型 | zh_TW |
| dc.subject | 最大可持續生產量 | zh_TW |
| dc.subject | 魩鱙漁業 | zh_TW |
| dc.subject | 資源評估 | zh_TW |
| dc.subject | stock assessment | en |
| dc.subject | larval fishery | en |
| dc.subject | maximum sustainable yield | en |
| dc.subject | non-equilibrium production model | en |
| dc.title | 臺灣魩鱙漁業資源評估:時序資料長度、地區及漁法對最大可持續生產量估值的效應 | zh_TW |
| dc.title | Assessment of larval fisheries in Taiwan: effects of time-series data, regions, and fishing types on estimates of maximum sustainable yield | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許建宗;丘臺生;張以杰 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chung Hsu;Tai-Sheng Chiu;Yi-Jay Chang | en |
| dc.subject.keyword | 魩鱙漁業,資源評估,最大可持續生產量,非平衡剩餘生產量模型, | zh_TW |
| dc.subject.keyword | larval fishery,stock assessment,maximum sustainable yield,non-equilibrium production model, | en |
| dc.relation.page | 165 | - |
| dc.identifier.doi | 10.6342/NTU202301734 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-19 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 22.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
