請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90467
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭重顯 | zh_TW |
dc.contributor.advisor | Chung-Hsien Kuo | en |
dc.contributor.author | 阮政毅 | zh_TW |
dc.contributor.author | Jeng-Yi Ruan | en |
dc.date.accessioned | 2023-10-03T16:12:50Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | B. Tondu and P. Lopez, "Modeling and control of McKibben artificial muscle robot actuators," IEEE Control Systems Magazine, vol. 20, no. 2, pp. 15-38, 2000, doi: 10.1109/37.833638.
M. E. Moran, "Evolution of robotic arms," Journal of Robotic Surgery, vol. 1, no. 2, pp. 103-111, 2007/07/01 2007, doi: 10.1007/s11701-006-0002-x. M. W. Hannan and I. D. Walker, "Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots," Journal of Robotic Systems, https://doi.org/10.1002/rob.10070 vol. 20, no. 2, pp. 45-63, 2003/02/01 2003, doi: https://doi.org/10.1002/rob.10070. B. A. Jones and I. D. Walker, "Kinematics for multisection continuum robots," IEEE Transactions on Robotics, vol. 22, no. 1, pp. 43-55, 2006, doi: 10.1109/TRO.2005.861458. B. A. Jones and I. D. Walker, "Practical Kinematics for Real-Time Implementation of Continuum Robots," IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1087-1099, 2006, doi: 10.1109/TRO.2006.886268. R. J. Webster and B. A. Jones, "Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review," The International Journal of Robotics Research, vol. 29, no. 13, pp. 1661-1683, 2010/11/01 2010, doi: 10.1177/0278364910368147. I. A. Gravagne and I. D. Walker, "Manipulability, force, and compliance analysis for planar continuum manipulators," IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 263-273, 2002, doi: 10.1109/TRA.2002.1019457. J. Burgner-Kahrs, D. C. Rucker, and H. Choset, "Continuum Robots for Medical Applications: A Survey," IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1261-1280, 2015, doi: 10.1109/TRO.2015.2489500. M. E. Smith, D. S. Esser, M. Rox, A. Kuntz, and R. J. Webster, "A Radial Folding Mechanism to Enable Surgical Continuum Manipulators to Fit Through Smaller Ports," in 2023 International Symposium on Medical Robotics (ISMR), 19-21 April 2023 2023, pp. 1-6, doi: 10.1109/ISMR57123.2023.10130276. C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, "Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey," IEEE Transactions on Biomedical Engineering, vol. 64, no. 8, pp. 1665-1678, 2017, doi: 10.1109/TBME.2016.2622361. P. E. Dupont, N. Simaan, H. Choset, and C. Rucker, "Continuum Robots for Medical Interventions," Proceedings of the IEEE, vol. 110, no. 7, pp. 847-870, 2022, doi: 10.1109/JPROC.2022.3141338. M. Wang, D. Palmer, X. Dong, D. Alatorre, D. Axinte, and A. Norton, "Design and Development of a Slender Dual-Structure Continuum Robot for In-Situ Aeroengine Repair," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1-5 Oct. 2018 2018, pp. 5648-5653, doi: 10.1109/IROS.2018.8594142. W. Mo, Y. Cheng, and F. Tao, "A Dataspace-centric Scheduler for Robot-aided Aero-engine Fleet Inspection," in 2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), 30 Nov.-2 Dec. 2022 2022, pp. 1-6, doi: 10.1109/ICSMD57530.2022.10058418. M. M. Coad, L. H. Blumenschein, S. Cutler, J. A. R. Zepeda, N. D. Naclerio, H. El-Hussieny, U. Mehmood, J. H. Ryu, E. W. Hawkes, and A. M. Okamura, "Vine Robots," IEEE Robotics & Automation Magazine, vol. 27, no. 3, pp. 120-132, 2020, doi: 10.1109/MRA.2019.2947538. M.-H. Hsu, P. T. Nguyen, D.-D. Nguyen, and C.-H. Kuo, "Image Servo Tracking of a Flexible Manipulator Prototype with Connected Continuum Kinematic Modules," Actuators, vol. 11, no. 12, doi: 10.3390/act11120360. 謝建治, "具備不同剛性組合之三節段連續體機器人設計與實現," 碩士, 電機工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/7q7nht Y. Liu, Y. Wan, S. Song, and J. Wang, "Design and Analysis of a Multi-Section Wire-driven Continuum Robot System with Variable Structures," in 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), 27-31 Dec. 2021 2021, pp. 392-397, doi: 10.1109/ROBIO54168.2021.9739387. J. Zhang, Z. Kan, Y. Li, Z. Wu, J. Wu, and H. Peng, "Novel Design of a Cable-Driven Continuum Robot With Multiple Motion Patterns," IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6163-6170, 2022, doi: 10.1109/LRA.2022.3166547. H. D. Yang and A. T. Asbeck, "Design and Characterization of a Modular Hybrid Continuum Robotic Manipulator," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 6, pp. 2812-2823, 2020, doi: 10.1109/TMECH.2020.2993543. L. Li, T. Jin, Y. Tian, F. Yang, and F. Xi, "Design and Analysis of a Square-Shaped Continuum Robot With Better Grasping Ability," IEEE Access, vol. 7, pp. 57151-57162, 2019, doi: 10.1109/ACCESS.2019.2914124. P. Lloyd, A. K. Hoshiar, T. d. Veiga, A. Attanasio, N. Marahrens, J. H. Chandler, and P. Valdastri, "A Learnt Approach for the Design of Magnetically Actuated Shape Forming Soft Tentacle Robots," IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3937-3944, 2020, doi: 10.1109/LRA.2020.2983704. W. R. Wockenfuß, V. Brandt, L. Weisheit, and W. G. Drossel, "Design, Modeling and Validation of a Tendon-Driven Soft Continuum Robot for Planar Motion Based on Variable Stiffness Structures," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3985-3991, 2022, doi: 10.1109/LRA.2022.3149031. B. Su, X. Ma, Z. Wang, Y. Gong, H. Li, S. Yu, J. Lei, S. Kuang, W. Yao, J. Wang, Y. Gao, and W. Xiu, "Cooperative Position and Attitude Following between Master and Slave Continuum Robots," in 2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 20-20 Aug. 2022 2022, pp. 89-94, doi: 10.1109/WRCSARA57040.2022.9903966. [Online]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=9903966&ref= A. Ghoul, K. Kara, S. Djeffal, M. Benrabah, and M. L. Hadjili, "Inverse Kinematic Model of Continuum Robots Using Artificial Neural Network," in 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), 6-10 May 2022 2022, pp. 1893-1898, doi: 10.1109/SSD54932.2022.9955828. S. Dian, Y. Zhu, G. Xiang, C. Ma, J. Liu, and R. Guo, "A Novel Disturbance-Rejection Control Framework for Cable-Driven Continuum Robots With Improved State Parameterizations," IEEE Access, vol. 10, pp. 91545-91556, 2022, doi: 10.1109/ACCESS.2022.3202934. P. Yu, N. Tan, M. Zhang, and F. Ni, "Inverse-Free Tracking Control of Continuum Robots with Unknown Models Based on Gradient Neural Networks," in 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), 3-5 Aug. 2022 2022, pp. 648-653, doi: 10.1109/DDCLS55054.2022.9858510. I. A. Seleem, H. El-Hussieny, and H. Ishii, "Imitation-Based Motion Planning and Control of a Multi-Section Continuum Robot Interacting With the Environment," IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1351-1358, 2023, doi: 10.1109/LRA.2023.3239306. S. Xu, B. He, Y. Zhou, Z. Wang, and C. Zhang, "A Hybrid Position/Force Control Method for a Continuum Robot With Robotic and Environmental Compliance," IEEE Access, vol. 7, pp. 100467-100479, 2019, doi: 10.1109/ACCESS.2019.2928572. C. Armanini, F. Boyer, A. T. Mathew, C. Duriez, and F. Renda, "Soft Robots Modeling: A Structured Overview," IEEE Transactions on Robotics, vol. 39, no. 3, pp. 1728-1748, 2023, doi: 10.1109/TRO.2022.3231360. T. F. Allen, L. Rupert, T. R. Duggan, G. Hein, and K. Albert, "Closed-Form Non-Singular Constant-Curvature Continuum Manipulator Kinematics," in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), 15 May-15 July 2020 2020, pp. 410-416, doi: 10.1109/RoboSoft48309.2020.9116015. H. Wang, W. Liang, B. Liang, H. Ren, Z. Du, and Y. Wu, "Robust Position Control of a Continuum Manipulator Based on Selective Approach and Koopman Operator," IEEE Transactions on Industrial Electronics, vol. 70, no. 12, pp. 12522-12532, 2023, doi: 10.1109/TIE.2023.3236082. A. Chawla, C. Frazelle, and I. Walker, "A Comparison of Constant Curvature Forward Kinematics for Multisection Continuum Manipulators," in 2018 Second IEEE International Conference on Robotic Computing (IRC), 31 Jan.-2 Feb. 2018 2018, pp. 217-223, doi: 10.1109/IRC.2018.00046. H. Guo, F. Ju, D. Bai, X. Wei, L. Wang, and B. Chen, "Shape Reconstruction for Continuum Robot Based on Pythagorean Hodograph–Bézier Curve With IMU and Vision Sensors," IEEE Sensors Journal, vol. 23, no. 8, pp. 8535-8544, 2023, doi: 10.1109/JSEN.2023.3248781. F. Xu, H. Wang, W. Chen, and Y. Miao, "Visual Servoing of a Cable-Driven Soft Robot Manipulator With Shape Feature," IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4281-4288, 2021, doi: 10.1109/LRA.2021.3067285. X. Wang, G. Fang, K. Wang, X. Xie, K. H. Lee, J. D. L. Ho, W. L. Tang, J. Lam, and K. W. Kwok, "Eye-in-Hand Visual Servoing Enhanced With Sparse Strain Measurement for Soft Continuum Robots," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2161-2168, 2020, doi: 10.1109/LRA.2020.2969953. X. Wang, J. Dai, H. S. Tong, K. Wang, G. Fang, X. Xie, Y. H. Liu, K. W. S. Au, and K. W. Kwok, "Learning-Based Visual-Strain Fusion for Eye-in-Hand Continuum Robot Pose Estimation and Control," IEEE Transactions on Robotics, vol. 39, no. 3, pp. 2448-2467, 2023, doi: 10.1109/TRO.2023.3240556. Y. Zhou, C. Barnes, J. Lu, J. Yang and H. Li, "On the Continuity of Rotation Representations in Neural Networks," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 5738-5746, 2019, doi: 10.1109/CVPR.2019.00589. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90467 | - |
dc.description.abstract | 本研究設計出一組三節段連續體機械臂。在連續體機械臂的碟片設計上,創新地採用兩種A型和B型的碟片來取代常見的萬向接頭或環氧樹酯黏合;在連續體機械臂的主幹設計上,使用矽膠包覆鎳鈦合金的方式取代常見的彈性材料或彈簧,維持彈性並降低主幹的震動,這種創新設計有助於提高連續體機械臂的精準度。同時,本研究改良了常見的片段定曲率模型,特別針對主幹固定盤面的曲段算法進行調整,以獲得更精準的運動學模型,提高了機械臂的運動精度。
由於在大部分連續體機械臂的研究中,多數只做到單節段或兩節段的連續體機械臂,對於多數干擾都可以忽略;由運動學絕對精度實驗與軌跡追蹤實驗可以發現,本研究中使用的三節段連續體機械臂明顯地受到重力影響,進而影響運動學的準確性。在運動學絕對精度實驗中,使用Motion Capture System測量10組不同的位置,算得誤差35.73毫米與標準差18.18,同時發現第一節彎曲幅度越大,誤差也跟著受影響。在軌跡追蹤實驗中,針對方形、圓形與S形使用Motion Capture System測出均方根誤差分別為18.23毫米、19.15毫米與11.37毫米,證實常見的定曲率模型假設在多節段且受重力影響的連續體機械臂上會存在誤差,進而影響多節段連續體機械臂在真實環境的應用。 因此,本研究藉由慣性測量單元(Inertial Measurement Unit;IMU)與神經網路針對連續體機械臂的末端點估測位置,本研究收集了74542筆IMU訓練資料,並使用其中的20%作為驗證集,得出2.23毫米的訓練誤差與4.09毫米的驗證誤差,在4500筆未看過的測試集中獲得4.25毫米的誤差與4.93的標準差。 在最後的實驗階段,本研究對於提出的神經網路的末端點估測方式加入立體相機、三指夾爪做夾取物品實驗。在實驗中,由於相機精度、手臂姿態與350克的夾爪,使原先利用末端無負載的手臂訓練的神經網路產生誤差,最終成功率為20%。為了驗證相機精度與手臂姿態是否對於夾取物品實驗產生影響,本研究將IMU換回Motion Capture System再次進行實驗。經過實驗顯示,使用Motion Capture System實驗的成功率為73.3%,證實相機立體精度、手臂姿態與負載對於夾取物品實驗確實產生影響。 為了進一步提升連續體機械臂以神經網路為回授的控制方式的精準度,本研究進行了結合神經網路結果與影像伺服的夾取實驗。這項實驗最終成功率為66.7%。這個成果驗證了在不依賴Motion Capture System的情況下,透過影像伺服和IMU回授的神經網路在常見環境中仍能夠有效發揮其作用。 | zh_TW |
dc.description.abstract | In this study, a three-segment continuum robotic arm was designed. A novel approach was employed in the design of the arm's disks, utilizing two types of A and B disks to replace conventional universal joints or epoxy bonding. For the main body design of the continuum robotic arm, a method involving silicon encapsulation of nickel-titanium alloy was adopted, in contrast to the conventional use of elastic materials or springs. This innovative design aimed to maintain elasticity while reducing main body vibrations, ultimately enhancing the precision of the continuum robotic arm. Additionally, the commonly used constant-curvature model was refined in this study, particularly in adjusting the algorithm for segments fixed to the main body, resulting in a more accurate kinematic model and improved arm motion precision.
Unlike most studies that focus on single or dual-segment continuum robotic arms, this research unveiled distinct challenges with a three-segment continuum robotic arm due to its susceptibility to gravitational effects, which can consequently impact kinematic accuracy. Absolute positional accuracy experiments, as well as trajectory tracking experiments, revealed this impact. In the absolute positional accuracy experiments using Motion Capture System to measure 10 different positions, an error of 35.73 millimeters with a standard deviation of 18.18 was recorded. Notably, it was observed that larger deflections of the first segment correlated with increased error. Similarly, in the trajectory tracking experiments involving square, circular, and S-shaped paths, Motion Capture System recorded root mean square errors of 18.23 millimeters, 19.15 millimeters, and 11.37 millimeters, respectively. This confirmed the presence of errors in the common constant-curvature model assumptions when applied to multi-segment continuum robotic arms affected by gravity, subsequently impacting their real-world applicability. Consequently, to address these challenges, this study employed inertial measurement units (IMUs) and neural networks to estimate the endpoint position of the continuum robotic arm, collecting 74,542 IMU training data points and utilizing 20% for validation. This process yielded a training error of 2.23 millimeters and a validation error of 4.09 millimeters. Moreover, in a previously unseen test set of 4,500 data points, an error of 4.25 millimeters and a standard deviation of 4.93 were achieved. In the final experimental phase, the proposed neural network-based endpoint estimation approach was combined with stereoscopic cameras and a three-finger gripper for object grasping experiments. However, due to factors such as camera accuracy, arm posture, and the gripper's 350-gram weight, the neural network trained with an unloaded arm exhibited errors, resulting in 20% success rate. To verify the influence of camera accuracy and arm posture on object grasping, the study repeated the experiment using Motion Capture System, achieving a success rate of 73.3%. This confirmed that camera accuracy, arm posture, and load significantly affected the object grasping experiment. To further enhance the precision of the continuum robotic arm controlled through neural network feedback, a fusion of neural network results and image servo was utilized for object grasping experiments. This approach ultimately achieved a success rate of 66.7%. This outcome demonstrates that, even without relying on Motion Capture System, the neural network integrated with image servoing and IMU feedback can effectively operate in common environments. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:12:50Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:12:50Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xiv 符號說明 xv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 連續體機器人設計研究 2 1.2.2 連續體機器人建模與控制方法研究 3 1.2.3 連續體機器人視覺控制研究 6 1.3 論文架構 7 第二章 系統架構 8 2.1 系統架構圖 8 2.2 機構設計 9 2.2.1 控制箱設計 12 2.2.2 單節連續體機器人模組設計 19 2.2.3 三節連續體機器人模組設計 25 2.2.4 量測機構設計 28 2.2.5 矽膠模具設計與製作過程 30 2.3 硬體規格介紹 32 2.3.1 直流馬達 32 2.3.2 慣性測量單元 33 2.3.3 動作捕捉系統 35 2.3.4 ZED 2i立體相機 36 2.3.5 柔性三指機械爪 37 2.4 電路板設計 38 第三章 連續體機器人運動學 42 3.1 基於片段定曲率模型的運動學 43 3.2 考慮碟片之定曲率模型 47 3.3 連續體機器人微分運動學 51 第四章 連續體機器人姿態估測與校準 54 4.1 基於正向運動學的姿態校準 54 4.2 基於神經網路的姿態估測 57 4.2.1 神經網路IMU數據輸入 58 4.2.2 神經網路介紹 60 第五章 影像處理與立體視覺 66 5.1 影像處理 66 5.1.1 型態運算(Morphology operator) 66 5.1.2 物體中心追蹤 67 5.2 相機立體視覺轉換 69 第六章 實驗結果與分析 74 6.1 考慮碟片之定曲率模型驗證 74 6.2 連續體機械臂軌跡追蹤實驗 79 6.3 以慣性測量單元為回授夾取物品 81 6.4 以運動捕捉為回授夾取物品 90 6.5 使用相機做影像伺服夾取物品 95 第七章 結論與未來展望 101 7.1 結論 101 7.2 未來展望 102 參考文獻 103 | - |
dc.language.iso | zh_TW | - |
dc.title | 三節段連續體機械臂設計與影像伺服控制 | zh_TW |
dc.title | Design of a Three-segment Continuum Robotic Arm and Image Servo Control | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 宋開泰;陳金聖;林惠勇;張文中 | zh_TW |
dc.contributor.oralexamcommittee | Kai-Tai Song;Chin-Sheng Chen;Huei-Yung Lin;Wen-Chung Chang | en |
dc.subject.keyword | 連續體機器人,片段定曲率運動學,微分運動學,神經網路,影像追蹤, | zh_TW |
dc.subject.keyword | Continuum Robot,Piecewise Constant Curvature Kinematics,Differential Kinematics,Neural Network,Image Servoing, | en |
dc.relation.page | 108 | - |
dc.identifier.doi | 10.6342/NTU202303762 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
dc.date.embargo-lift | 2028-08-08 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 8.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。