Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周錫增zh_TW
dc.contributor.advisorHsi-Tseng Chouen
dc.contributor.author吳睿哲zh_TW
dc.contributor.authorRui-Zhe Wuen
dc.date.accessioned2023-10-03T16:12:33Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationT. -K. Le, U. Salim and F. Kaltenberger, "An Overview of Physical Layer Design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and 17," in IEEE Access, vol. 9, pp. 433-444, 2021
X. Gu et al., "A multilayer organic package with 64 dual-polarized antennas for 28GHz 5G communication," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 1899-1901
K. Bao, J. Zhou, L. Wang, A. Sun, Q. Zhang and Y. Shen, "A 29–30GHz 64-element Active Phased array for 5G Application," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018, pp. 492-495
J. Myeong, K. Park, A. Nafe, H. Chung, G. M. Rebeiz and B. -W. Min, "A 28-GHz Full Duplex Front-End and Canceller Using Two Cross-Polarized 64-Element Phased Arrays," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 825-828
A. Alhamed, G. Gultepe and G. M. Rebeiz, "16–52 GHz 5G Transmit and Receive 64-Element Phased-Arrays With 50-51.7 dBm Peak EIRP and Multi-Gb/s 64-QAM Operation," 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, CO, USA, 2022, pp. 926-928
Technical Specification 38.104 (V15.2.0) Base Station (BS) Radio Transmission and Reception. Document 38.104, 3GPP, 2018.
P.G. Huray, "Impact of Copper Surface Texture on Loss: A Model that Works", DesignCon 2010.
B. Simonovich, "Practical Method for Modeling Conductor Surface Roughness Using Close Packing of Equal Spheres", DesignCon 2015.
H. -T. Chou and Z. -D. Yan, “Lens-based Multi-Beam Antenna Technologies for Highly Efficient Dual-Polarized Radiations at Sub-THz Frequencies, “2021 International Symposium on Antennas and Propagation (ISAP), pp. 1-2, 2021.
H. -T. Chou, Y. -S. Chang, H. -J. Huang, Z. -D. Yan, T. Lertwiriyaprapa and D. Torrungrueng, “Optimization of Three-Dimensional Multi-Shell Dielectric Lens Antennas to Radiate Multiple Shaped Beams for Cellular Radio Coverage,” in IEEE Access, vol. 7, pp. 182974-182982, 2019.
H. -T. Chou and Z. -D. Yan, “Parallel-Plate Luneburg Lens Antenna for Broadband Multibeam Radiation at Millimeter-Wave Frequencies With Design Optimization,” in IEEE Transactions on Antennas and Propagation, vol. 66, no. 11, pp. 5794-5804, Nov. 2018.
P. Hannan, “The element-gain paradox for a phased-array antenna, “ IEEE Trans. Antennas Propag., vol. 12, no. 4, pp. 423-433, Jul. 1964.
W. Kahn, “Active reflection coefficient and element efficiency in arbitrary antenna arrays, “ IEEE Trans. Antennas Propag., vol. 17, no. 5, pp. 653-654, Sept. 1969.
R. C. Hansen, Ed., Microwave Scanning Antennas, Vol. II, Antenna Theory and Practice. New York: Academic Press, 1966.
D. M. Pozar, “The active element pattern, “ IEEE Trans. Antennas Propag., Vol. 42, no. 8, pp. 1176-1178, Aug. 1994
C. A. Balanis, Antenna theory: analysis and design, 4th ed. John Wiley & sons, 2015.
D. F. Shanno, "Conditioning of quasi-Newton methods for function minimization," Math. Comp., Vol. 24, pp. 647-656, 1970.
The MathWorks I. (2021). Optimization Toolbox. Natick, Massachusetts, United States. Retrieved from https://www.mathworks.com/help/optim/
Kenneth V. Price, Rainer M. Storn and Jouni A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series Springer, 2005.
B. Liu, H. Aliakbarian, Z.Ma, G. Vandenbosch, G. Gielen, “An Efficient Method for Antenna Design Optimization Based on Evolutionary Computation and Machine Learning Techniques,” IEEE Trans. Antennas Propag., Vol. 62, no. 1, pp. 7-18, Jan. 2014.
R. Storn, “On the usage of differential evolution for function optimization,” Proceedings of North American Fuzzy Information Processing, 1996, pp. 519–523.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90466-
dc.description.abstract近年來,隨著通訊技術邁入5G時代,更高頻的頻段被運用在通訊系統中,帶來了更高衰減損耗的同時,也擁有著通道容量增加與天線尺寸縮小化的好處;因此,透過多個天線單元彌補增益的主動式陣列天線得以在商用領域實現應用。本論文發展了一項毫米波頻段的透鏡式雙極化8x8收發陣列天線結構,搭配基於差分進化演算法之波束成型優化技術,其操作頻段為26.5GHz-29.5GHz。關於陣列天線,本論文以瑞薩電子公司的波束成型晶片為主體完成了8x8毫米波陣列天線的設計,擁有良好的阻抗匹配,在一塊單獨的十層電路版上整合了主動式陣列天線、升降頻模組、電源和控制晶片,這有助於提升產品穩定性,並為之後與透鏡整合降低難度。唯因產品生產時程問題,本論文尚不能呈現該陣列天線之量測結果。在透鏡方面,配合8x8陣列天線的兩種近似球體與圓柱型的鐵氟龍透鏡結構被提出,其結構簡單卻能有效提升主動式陣列在部分掃描角度的增益;經模擬驗證,前者模型可提升±30°的增益並且最高提升6dB,而後者能提升±55°的增益並且最高提升3.4dB;本論文亦對圓柱型的鐵氟龍透鏡在16x4的陣列天線增益效果進行研究,發現其可以在±60°以內達成最低2.2dB,最高3.7dB的增益提升。最後,本論文根據嵌入式單元場型合成理論預測不同激發之合成場型,以此建立成本函式並將擬牛頓法與差分演化演算法引入波束成型優化中,為同時處理主瓣掃描增益、旁瓣波平以及主動式反射係數等多項參數提供一般性的解決方案,結果顯示兩種算法皆可在犧牲增益值0~0.5dB以內、旁瓣波平≈-15dB的情況下,將主動式反射係數降低至少2.3dB。zh_TW
dc.description.abstractIn recent years, as communication technology enters the 5G era, higher frequency bands are used in communication systems, which brings higher path loss and also has the benefits of increased channel capacity and reduced antenna size; therefore, active array antennas that compensate for gain through multiple antenna elements can be used in commercial applications.
This paper develops a dual-polarization 8x8 transceiver array antenna with lens in the millimeter wave band, cooperating with beamforming optimization technology based on differential evolution algorithm, and its operating frequency band is 26.5GHz-29.5GHz. Regarding the array antenna, this thesis completed the design of the 8x8 millimeter-wave array antenna, with good impedance matching, using the beamforming chip of Renesas Electronics. The active array antenna, up/down-frequency module, power supply and control chip are integrated on a single ten-layer circuit board, which helps to improve product stability and reduce the difficulty of later integration with the lens. However, due to product production schedule issues, this paper cannot yet present the measurement results of the array antenna. In terms of lenses, two approximate spherical and cylindrical Teflon lens structures with 8x8 array antennas are proposed. The structure is simple but can effectively improve the gain of the active array at part of the scanning angle; the simulation verification shows that the former model can increase the gain in the range of ±30° and the maximum increase is 6dB, while the latter can increase the gain in the range of ±55° and the maximum increase is 3.4dB. This paper also studies the gain effect of the cylindrical Teflon lens on the 4x16 array antenna, and finding that the gain can increase between 2.2dB to 3.7dB within the range of ±60°. Finally, this paper predicts the synthesized field patterns of different excitations based on embedded element pattern theory, and then establishes the cost function and introduces the quasi-Newton and differential evolution algorithm into the beamforming optimization to provide a general solution for processing multiple parameters such as the main lobe scanning gain, sidelobe level, and active reflection coefficient in the same time. The results show that both algorithms can reduce the active reflection coefficient by at least 2.3dB while sacrificing the gain value within 0~0.5dB with the sidelobe level≈-15dB.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:12:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:12:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表格目錄 xv
Chapter 1 緒論 1
1.1 研究動機 1
1.2 論文貢獻與架構 2
Chapter 2 雙極化毫米波貼片天線陣列設計 3
2.1 天線陣列模組系統 3
2.2 波束成型晶片評估板量測 5
2.3 高密度互連板與層壓結構 8
2.4 雙極化雙層貼片天線陣列設計 8
2.4.1 天線單元設計 8
2.4.2 阻抗匹配 12
2.4.3 誤差分析 18
2.4.4 8x8天線陣列 18
2.5 威爾金森功率分配器設計 21
2.5.1 外層威爾金森功率分配器 23
2.5.2 內層威爾金森功率分配器 26
2.5.3 四階威爾金森功率分配器 29
2.6 系統分析 32
2.6.1 射頻線路 32
2.6.2 數位控制 35
2.6.3 電源分配 36
2.7 電路與佈局設計 38
2.8 電源電壓降模擬 40
2.9 設計結果比較 46
Chapter 3 透鏡式天線陣列 48
3.1 魚眼透鏡 52
3.2 8x8平面天線陣列與半球形多層透鏡 54
3.3 8x8平面天線陣列與均勻透鏡 59
3.3.1 球面透鏡 59
3.3.2 圓柱面透鏡 61
3.4 16x4平面天線陣列與圓柱面透鏡 64
3.5 各透鏡掃描結果比較 69
Chapter 4 基於擬牛頓法與差分演化算法之波束成型 72
4.1 波束成型 72
4.2 主動式反射係數與嵌入式單元場型 73
4.3 嵌入式單元場型合成驗證 75
4.4 成本函數 77
4.5 擬牛頓法與差分演化演算法之模擬場型合成結果 77
Chapter 5 結論 84
參考資料 85
-
dc.language.isozh_TW-
dc.subject主動式反射係數zh_TW
dc.subject差分演化算法zh_TW
dc.subject透鏡式天線zh_TW
dc.subject毫米波zh_TW
dc.subject天線陣列zh_TW
dc.subject波束成型zh_TW
dc.subjectantenna arrayen
dc.subjectbeamformingen
dc.subjectdifferential evolution algorithmen
dc.subjectlens antennaen
dc.subjectmillimeter waveen
dc.subjectactive reflection coefficient (ARC)en
dc.title毫米波頻段透鏡式天線陣列與波束成型演算法zh_TW
dc.titleLens antenna array in millimeter wave frequency band with beamforming algorithmen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧信嘉;鄭宇翔;林丁丙;段世中zh_TW
dc.contributor.oralexamcommitteeHsin-Chia Lu;Yu-Hsiang Cheng;Ding-Bing Lin;Shih-Chung Tuanen
dc.subject.keyword毫米波,天線陣列,透鏡式天線,波束成型,差分演化算法,主動式反射係數,zh_TW
dc.subject.keywordmillimeter wave,antenna array,lens antenna,beamforming,differential evolution algorithm,active reflection coefficient (ARC),en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202303612-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
11.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved