Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90453
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨zh_TW
dc.contributor.advisorShow-Li Chenen
dc.contributor.author謝欣芸zh_TW
dc.contributor.authorHsin-Yun Hsiehen
dc.date.accessioned2023-10-03T16:08:42Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationChen PH, Tsao YP, Wang CC, Chen SL. Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res. 2008 Jan;36(1):51-66.
Tsai TC, Lee YL, Hsiao WC, Tsao YP, Chen SL. NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem. 2005 May 20;280(20):20000-9.
Chen HH, Chen WP, Yan WL, Huang YC, Chang SW, Fu WM, Su MJ, Yu IS, Tsai TC, Yan YT, Tsao YP, Chen SL. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci. 2015 Nov 15;128(22):4196-209.
Chen HH, Fan P, Chang SW, Tsao YP, Huang HP, Chen SL. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget. 2017 Mar 28;8(13):21501-21515.
Chen HH, Tsai LK, Liao KY, Wu TC, Huang YH, Huang YC, Chang SW, Wang PY, Tsao YP, Chen SL. Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction. J Cachexia Sarcopenia Muscle. 2018 Aug;9(4):771-785.
Yang KC, Chuang KW, Yen WS, Lin SY, Chen HH, Chang SW, Lin YS, Wu WL, Tsao YP, Chen WP, Chen SL. Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. J Mol Cell Cardiol. 2019 Dec; 137: 9-24.
Tsai LK, Chen IH, Chao CC, Hsueh HW, Chen HH, Huang YH, Weng RW, Lai TY, Tsai YC, Tsao YP, Chen SL. Autoantibody of NRIP, a novel AChR-interacting protein, plays a detrimental role in myasthenia gravis. J Cachexia Sarcopenia Muscle. 2021 Jun;12(3):665-676.
Bähler, M. and Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett. 513, 107-113.
Chin, E. R., Olson, E. N., Richardson, J. A., Yang, Q., Humphries, C., Shelton, J. M., Wu, H., Zhu, W., Bassel-Duby, R. and Williams, R. S. (1998). A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499-2509.
Abraham, S. T. and Shaw, C. (2006). Increased expression of delta CaMKII
isoforms in skeletal muscle regeneration: implications in dystrophic muscle
disease. J. Cell. Biochem. 97, 621-632.
Demonbreun, A. R., Lapidos, K. A., Heretis, K., Levin, S., Dale, R., Pytel, P., Svensson, E. C. and McNally, E. M. (2010). Myoferlin regulation by NFAT in muscle injury, regeneration and repair. J. Cell Sci. 123, 2413-2422.
Thompson LV. Age-related muscle dysfunction. Exp Gerontol. 2009 Jan-Feb;44(1-2):106-11.
Mitchell, W.K., Williams, J., Atherton, P., Larvin, M., Lund, J., Narici, M., 2012. Sarcopenia, Dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 260.
Narici, M. V., Maganaris, C. N., Reeves, N. D., and Capodaglio, P. (2003). Effect of aging on human muscle architecture. J. Appl. Physiol. 95, 2229–2234.
Thom, J. M., Morse, C. I., Birch, K. M., and Narici, M. V. (2007). Influence of muscle architecture on the torque and power-velocity characteristics of young and elderly men. Eur. J. Appl. Physiol. 100, 613–619.
Larsson, L., Li, X., and Frontera, W. R. (1997). Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am. J. Physiol. 272, C638–C649.
D’Antona, G., Pellegrino, M. A., Adami, R., Rossi, R., Carlizzi, C. N., Canepari, M., Saltin, B., and Bottinelli, R. (2003). The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J. Physiol. (Lond.) 552, 499–511.
Mizunoe Y, Kobayashi M, Saito H, Goto A, Migitaka R, Miura K, Okita N, Sudo Y, Tagawa R, Yoshida M, Umemori A, Nakagawa Y, Shimano H, Higami Y. Prolonged caloric restriction ameliorates age-related atrophy in slow and fast muscle fibers of rat soleus muscle. Exp Gerontol. 2021 Oct 15; 154: 111519.
Gao Y, Xu L, Han R 2018. Chapter 14 - Genome Editing Therapy for Duchenne Muscular Dystrophy. In Gene Therapy in Neurological Disorders. Li M, and Snider BJ, editors: Academic Press. 277-285.
Yu J, Li T, Zhu J. Gene Therapy Strategies Targeting Aging-Related Diseases. Aging Dis. 2023 Apr 1;14(2):398-417.
Wang Y, Pessin JE. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care. 2013; 16: 243–250.
Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015 Apr;39(2):155-62.
Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J Target Meas Anal Mark 17, 139–142 (2009).
Bassel-Duby, R. and Olson, E. N. (2006). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 75, 19-37.
Tai, P.W., Fisher-Aylor, K.I., Himeda, C.L. et al. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skeletal Muscle 1, 25 (2011).
Perriard, J-C., Hossle, J., Schafer, B., Soldait, T., Wegmann, G. and Wirz, T. (1989). Multiple tasks of creatine kinase isoproteins. In Cellular and Molecular Biology of Muscle Development. (Kedes, L. and Stockdale, F., eds.) pp.545–554.
Lyons GE, Muhlebach S, Moser A, Masood R, Paterson BM, Buckingham ME, Perriard JC: Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development. 1991, 113: 1017-1029.
A.S. Faqi, Chapter 1 - Introduction, Editor(s): Ali Said Faqi, A Comprehensive Guide to Toxicology in Nonclinical Drug Development (Second Edition), Academic Press, 2017, 1-4
McHugh ML. The chi-square test of independence. Biochem Med (Zagreb). 2013;23(2):143-9.
Friendly, M. and Denis, D. (2005), The early origins and development of the scatterplot. J. Hist. Behav. Sci., 41: 103-130.
Dagher R, Helman L. Rhabdomyosarcoma: an overview. Oncologist. 1999;4(1):34-44.
Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, Wilkinson MR, Vadodaria B, Chen X, McGee RB, Hines-Dowell S, Nuccio R, Quinn E, Shurtleff SA, Rusch M, Patel A, Becksfort JB, Wang S, Weaver MS, Ding L, Mardis ER, Wilson RK, Gajjar A, Ellison DW, Pappo AS, Pui CH, Nichols KE, Downing JR. Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl J Med. 2015 Dec 10;373(24):2336-2346.
Kallen, ME; Hornick, JL (January 2021). "The 2020 WHO Classification: What's New in Soft Tissue Tumor Pathology?". The American Journal of Surgical Pathology. 45 (1): e1–e23.
Denham, B.E. (2016). Log-linear Analysis. In Categorical Statistics for Communication Research, B.E. Denham (Ed.).
Odetunmibi OA, Adejumo AO, Anake TA. Log-Linear Modelling of Effect of Age and Gender on the Spread of Hepatitis B Virus Infection in Lagos State, Nigeria. Open Access Maced J Med Sci. 2019 Jul 13;7(13):2204-2207.
Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990 Jun 13;263(22):3029-34.
Distefano G, Goodpaster BH. Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb Perspect Med. 2018 Mar 1;8(3): a029785.
Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci. 1995 Nov;50 Spec No:11-6.
Rachel Nilwik, Tim Snijders, Marika Leenders, Bart B.L. Groen, Janneau van Kranenburg, Lex B. Verdijk, Luc J.C. van Loon. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental Gerontology. Volume 48, Issue 5, 2013, Pages 492-498.
Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014 Apr;42(2):53-61.
Reggiani C, Schiaffino S. Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. Eur J Transl Myol. 2020 Sep 9;30(3):9311.
Balagopal P, Rooyackers OE, Adey DB, Ades PA, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. American Journal of Physiology-Endocrinology and Metabolism. 1997; 36: E790–E800.
Thompson LV, Durand D, Fugere NA, Ferrington DA. Myosin and actin expression and oxidation in aging muscle. Journal of Applied Physiology. 2006; 101: 1581–1587.
Bloemberg D, Quadrilatero J (2012) Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis. PLoS ONE 7(4): e35273.
Sugiura T, Matoba H, Miyata H, Kawai Y, Murakami N. Myosin heavy chain isoform transition in ageing fast and slow muscles of the rat. Acta Physiol Scand. 1992 Apr;144(4):419-23.
James O. Marx and others, Effects of Aging on Human Skeletal Muscle Myosin Heavy-Chain mRNA Content and Protein Isoform Expression, The Journals of Gerontology: Series A, Volume 57, Issue 6, 1 June 2002, Pages B232–B238.
Kumar S, Perlman E, Harris CA, Raffeld M, Tsokos M. Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol. 2000 Sep;13(9):988-93.
Massimo Ganassi, Sara Badodi, Kees Wanders, Peter S Zammit, Simon M Hughes (2020) Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis eLife 9: e60445.
Pajalunga, D.; Crescenzi, M. Restoring the Cell Cycle and Proliferation Competence in Terminally Differentiated Skeletal Muscle Myotubes. Cells 2021, 10, 2753.
Gotthardt M, Hammer RE, Hübner N, Monti J, Witt CC, McNabb M, Richardson JA, Granzier H, Labeit S, Herz J. Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J Biol Chem. 2003 Feb 21;278(8):6059-65.
Chen PH, Tsao YP, Wang CC, Chen SL. Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res. 2008 Jan;36(1):51-66.
Lyons GE, Mühlebach S, Moser A, Masood R, Paterson BM, Buckingham ME, Perriard JC. Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development. 1991 Nov;113(3):1017-29.
Pappo AS, Anderson JR, Crist WM, Wharam MD, Breitfeld PP, Hawkins D, Raney RB, Womer RB, Parham DM, Qualman SJ, and Grier HE (1999). Survival after relapse in children and adolescents with rhabdomyosarcoma: A report from the Intergroup Rhabdomyosarcoma Study Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 17, 3487–3493.
Hostein I, Andraud-Fregeville M, Guillou L, Terrier-Lacombe MJ, Deminiere C, Ranchere D, Lussan C, Longavenne E, Bui NB, Delattre O, and Coindre JM (2004). Rhabdomyosarcoma: value of myogenin expression analysis and molecular testing in diagnosing the alveolar subtype: an analysis of 109 paraffin-embedded specimens. Cancer 101, 2817–2824.
Kumar S, Perlman E, Harris CA, Raffeld M, Tsokos M. Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol. 2000 Sep;13(9):988-93.
Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, Gordon B, Dapper J, Blankenship K, Yang Y, Li Y, Shaw TI, Cho JH, Wang X, Xu B, Gupta P, Fan Y, Liu Y, Rusch M, Griffiths L, Jeon J, Freeman BB 3rd, Clay MR, Pappo A, Easton J, Shurtleff S, Shelat A, Zhou X, Boggs K, Mulder H, Yergeau D, Bahrami A, Mardis ER, Wilson RK, Zhang J, Peng J, Downing JR, Dyer MA; St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018 Sep 10;34(3):411-426.e19.
Kannus P, et al. Location and distribution of non-collagenous matrix proteins in musculoskeletal tissues of rat. Histochem J. 1998;30(11):799–810.
Zhang, W., Liu, Y. & Zhang, H. Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 11, 65 (2021).
Brennan TJ, Olson EN. Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev. 1990 Apr;4(4):582-95.
Wohlwend M, Laurila PP, Williams K, Romani M, Lima T, Pattawaran P, Benegiamo G, Salonen M, Schneider BL, Lahti J, Eriksson JG, Barrès R, Wisløff U, Moreira JBN, Auwerx J. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Sci Transl Med. 2021 Dec 8;13(623):eabc7367.
He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwick DG, Tindall DJ, Gelmann EP, Abate-Shen C, Carter KC. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics. 1997 Jul 1;43(1):69-77.
Shen MM, Abate-Shen C. Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev Dyn. 2003 Dec;228(4):767-78.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90453-
dc.description.abstract核受體相互作用蛋白(NRIP),又稱為DCAF6(DDB1和CUL4相關因子6)或IQWD1,是一種核蛋白,由860個氨基酸組成,具有七個WD-40結構域和一個IQ結構。在我們之前的研究中,我們發現NRIP在老化的老鼠骨骼肌和脊髓中的表達下降。此外,16週大的特定於肌肉的NRIP基因敲除(cKO)小鼠表現出異常肌肉和運動缺陷,與老化小鼠相似。這表明NRIP可能參與與年齡相關的肌肉功能障礙。
因此,我們希望通過進行AAV-NRIP基因治療來研究NRIP是否能改善老化小鼠的運動功能。結果顯示,AAV-NRIP能夠恢復老化小鼠的肌肉力量和神經肌肉接合點(NMJ)大小。為進一步研究AAV-NRIP基因治療在老化小鼠中的效果,本研究評估了肌纖維大小、氧化纖維表達水平、肌纖維類型分佈以及myogenin的表達。我們發現AAV-NRIP基因治療能夠恢復肌纖維大小,並提高老化小鼠中AAV-NRIP感染細胞中的myogenin表達。
接下來,我們對老化小鼠全身肌肉中NRIP過度表達的影響很感興趣。因此,在我們的實驗室中生成了特定表達肌肉中NRIP的NRIP轉基因小鼠(Rosa-NRIP-cre小鼠)。我們測量了NRIP轉基因小鼠的運動能力,包括運動活動能力、旋轉桿測試和握力測試。這些行為測試的結果到小鼠60週為止都沒有顯示出顯著差異,這表明NRIP轉基因小鼠到60週大時都沒有改善運動能力的情況。因此後續還需繼續進行運動能力測試以觀察NRIP是否有助改善小鼠老化時的運動功能。
最後,為了驗證NRIP在人類骨骼肌中的表達水平隨年齡的變化,我們對人類骨骼肌組織的微陣列進行了免疫組織化學染色。在對正常骨骼肌組織和疾病骨骼肌組織(尤其是橫紋肌肉瘤)進行NRIP表達評分後,我們通過統計分析分析了不同病例的評分。結果表明,正常人類骨骼肌中的NRIP表達隨著年齡的增長而下降,這與先前的研究結果相一致,顯示NRIP在老鼠老化模式中也會隨著年齡的增長而下降。此外,橫紋肌肉瘤(一種人類骨骼肌疾病)中的NRIP表達在老化過程中略微增加。此外,比較正常和疾病骨骼肌中的NRIP評分,我們發現橫紋肌肉瘤中的NRIP表達水平高於正常骨骼肌。
綜上所述,NRIP可能在老化過程中在骨骼肌中發揮重要作用。在這項研究中,我們發現AAV-NRIP基因治療可以恢復老化小鼠的肌纖維大小並提高myogenin的表達。此外,NRIP在老化的人類正常骨骼肌中表達的趨勢與老化小鼠相似。以上所有結果表明,NRIP在老化過程中可能成為治療肌肉異常的潛在方法,需要進一步的研究。
zh_TW
dc.description.abstractNuclear receptor interaction protein (NRIP), also known as DCAF6 (DDB1 and CUL4 associated factor 6) or IQWD1, is a nuclear protein consisting of 860 amino acids with seven WD-40 domains and one IQ motif. In our previous study, NRIP expression declined in the skeletal muscle and spinal cord of aging mice. Furthermore, 16-week-old muscle-specific NRIP knockout (cKO) mice displayed abnormal muscles and motor deficits, similar to those observed in aging mice. This indicates that NRIP may participate in age-related muscle dysfunction.
Therefore, we wanted to investigate whether NRIP could improve the motor function of aging mice by conducting AAV-NRIP gene therapy. The results showed that AAV-NRIP rescued muscular strength and NMJ size in aging mice. To further examine the effects of AAV-NRIP gene therapy in aging mice, this study assessed muscle fiber size, oxidative fiber expression levels, myofiber type distribution, and myogenin expression. We discovered that AAV-NRIP gene therapy rescued myofiber size and elevated myogenin expression in AAV-NRIP infected cells of aging mice.
Next, were highly interested in investigating the effects of overexpressing NRIP in the muscles of aging mice. Therefore, we generated NRIP transgenic mice with NRIP specifically expressed in muscle (Rosa-NRIP-cre mice) in our laboratory. We measured the motor functions of the NRIP transgenic mice, including locomotor activity, rotarod test, and grip force test. The results of these behavioral tests did not show significant differences in mice up to 60 weeks of age, indicating that the NRIP transgenic mice did not exhibit improved motor functions by the age of 60 weeks. Therefore, further ongoing motor function tests is required to observe whether NRIP contributes to improving motor function in aging mice.
Finally, to verify the expression level of NRIP in human skeletal muscle with age, we performed IHC staining on a microarray of human skeletal muscle tissue. After scoring the NRIP expression in normal skeletal muscle tissues and diseased skeletal muscle tissues, specifically rhabdomyosarcoma, we analyzed the scores of different cases using statistical analysis. The results indicate that NRIP expression declines with aging in normal human skeletal muscle, which corresponds to the previous study showing NRIP decline with age in a mouse aging model. Moreover, NRIP expression slightly increases with aging in rhabdomyosarcoma, a human skeletal muscle disease. Additionally, when comparing the NRIP score between normal and diseased human skeletal muscle, we found that NRIP expression level is higher in rhabdomyosarcoma tissues than in normal skeletal muscle tissues.
Collectively, NRIP may play an important role in skeletal muscle during aging. In this study, we discovered that AAV-NRIP gene therapy can rescue muscle fiber size and elevate myogenin expression in aging mice. Additionally, NRIP expression follows a similar declining trend in aging human normal skeletal muscle as in aging mice. All of the above findings suggest that NRIP has the potential to be a possible treatment for muscle abnormalities in aging, which warrants further research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:08:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:08:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
Abstract V
Chapter 1 Introduction 1
1.1 Characteristics of nuclear receptor interaction protein (NRIP) 1
1.2 The role of NRIP in skeletal muscle 2
1.3 Aging effects on skeletal muscle 3
1.4 The effect of NRIP in skeletal muscle when aging 4
1.5 Gene therapy in aging 5
1.6 Aim of this study 7
Chapter 2 Materials and methods 10
2.1 Study approval 10
2.2 Aging mice model 10
2.3 Muscle-specific NRIP transgenic mice 10
2.4 Western blots analysis 11
2.5 Immunofluorescence assay of extracellular matrix (laminin) and slow myosin heavy chain in skeletal muscle 12
2.6 Immunofluorescence assay of myosin heavy chain type in skeletal muscle 13
2.7 Immunofluorescence assay of myogenin, Flag-NRIP and GFP in skeletal muscle 14
2.8 Behavior test 16
2.9 Immunohistochemistry assay 17
2.10 Statistical analysis 18
Chapter 3 Results 19
3.1 NRIP expression in AAV-NRIP gene therapy of aging mice. 19
3.2 AAV-NRIP gene therapy could increase the size of myofiber in aging mice. 21
3.3 AAV-NRIP gene therapy will not change slow myofiber expression level and myofiber type distribution in aging mice. 23
3.4 AAV-NRIP gene therapy can elevate myogenin expression in AAV-NRIP infected cells in aging mice. 25
3.5 NRIP transgenic mice do not show improvement in motor functions with increasing age. 28
3.6 NRIP expression declined along with age in normal skeletal muscle of human. 33
3.7 NRIP expression slightly increased with aging in rhabdomyosarcoma, a human skeletal muscle disease. 35
3.8 NRIP expression increased with rhabdomyosarcoma, a human skeletal muscle disease. 36
Chapter 4 Discussion 40
Chapter 5 Figures 51
Chapter 6 Supplementary 91
Chapter 7 Appendix 105
Chapter 8 Reference 106
-
dc.language.isoen-
dc.subject基因治療zh_TW
dc.subject免疫組織化學染色zh_TW
dc.subject人類肌肉組織zh_TW
dc.subject轉基因小鼠zh_TW
dc.subject核受體結合蛋白zh_TW
dc.subjectgene therapyen
dc.subjectagingen
dc.subjecttransgenic miceen
dc.subjecthuman muscle tissueen
dc.subjectIHCen
dc.subjectNRIPen
dc.titleNRIP的表現會隨著老化下降且AAV-NRIP治療可以增加老化小鼠的肌肉纖維面積zh_TW
dc.titleThe NRIP expression declines with aging and AAV-NRIP can increase muscle fiber size in aging miceen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王培育;黃祥博;蔡力凱zh_TW
dc.contributor.oralexamcommitteePei-Yu Wang;Hsiang-Po Huang;Li-Kai Tsaien
dc.subject.keyword核受體結合蛋白,基因治療,轉基因小鼠,人類肌肉組織,免疫組織化學染色,zh_TW
dc.subject.keywordNRIP,gene therapy,aging,transgenic mice,human muscle tissue,IHC,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202303610-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
dc.date.embargo-lift2025-08-09-
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved